Intrauterine malformation: metabolomics as a new approach to solving the old problem

Gasanbekova A.P., Frankevich N.A., Frankevich V.E.

1) Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) Siberian State Medical University, Ministry of Health of Russia, Tomsk, Russia
Fetal growth retardation (FGR) remains one of the relevant problems in modern obstetrics одной из актуальных в современном акушерстве, being included in the list of great obstetric syndromes, because it not only leads to unfavorable perinatal and early neonatal outcomes, but may also considerably affect on long-term predictions for the neonatal health. The lean phenotype hypothesis was first mentioned in the last decade of the twentieth century. Following 30 years, investigations confirmed a relationship between the birth body mass index and the cardiometabolic syndrome manifesting itself in these patients in their adult life. During intrauterine development, the fetus with growth retardation in the presence of sub- and decompensation of placental perfusion makes a number of hemodynamic, metabolic, and hormonal adjustments to cope with the unfavorable intrauterine environment; and these changes can become permanent and irreversible. Despite successes in studying the pathogenesis of FGR, biomarkers that are able to identify this condition in its early stage and to stratify its severity both pre- and postnatality, are still lacking. There is still no confidence in the trajectory of postnatal development of children of this cohort, in the right contribution of eating habits into their growth to prevent or at least to limit long-term complications. Under these conditions, non-targeted metabolomics is a relatively new area of “omix” studies, which may be a good method to study metabolic disturbances generally associated with FGR.
Conclusion: A whole series of studies describing the “early” model of glucose intolerance, resistance to insulin, to the accumulation of catabolites, and to the changed amino acid metabolism in the newborns with FGR have been accumulated today. Larger investigations are needed to confirm these results and to judge their applicability in clinical practice.

Authors' contributions: Gasanbekova A.P., Frankevich N.A. – systemic analysis, writing the manuscript; Frankevich V.E. – editing the manuscript.
Conflicts of interest: The authors declare that there are no possible conflicts of interest.
Funding: The investigation has been supported by Russian Science Foundation Grant No. 22‑15‑0032 “Novel noninvasive diagnostic approaches to optimizing the obstetric tactics, to predicting perinatal outcomes, and to preventing postnatal growth disorders in fetal growth retardation”.
For citation: Gasanbekova A.P., Frankevich N.A., Frankevich V.E. Intrauterine malformation:
metabolomics as a new approach to solving the old problem. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (5): 12-20 (in Russian)


intrauterine growth retardation
fetal growth restriction
small for the gestational age
mass spectrometry


1. Cusick S.E., Georgieff M.K. The role of nutrition in brain development: the golden opportunity of the "First 1000 Days". J. Pediatr. 2016; 175: 16‑21.

2. Buck Louis G.M., Smarr M.M., Patel C.J. The exposome research paradigm: an opportunity to understand the environmental basis for human health and disease. Curr. Environ. Health Rep. 2017; 4(1): 89‑98. s40572‑017‑0126‑3.

3. Министерство здравоохранения Российской Федерации. Клинические рекомендации «Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода)». М.; 2022. 76c. Доступно по: [Ministry of Health of the Russian Federation. Clinical guidelines "Insufficient fetal growth requiring the provision of maternal health care (fetal growth retardation)". Moscow; 2022. 76p. (in Russian). Available at:].

4. Макаров И.О., Юдина Е.В., Боровкова Е.И. Задержка роста плода. Врачебная тактика. Учебное пособие. 3‑е изд. М.: МЕДпресс‑информ; 2016. [Makarov I.O., Yudina E.V., Borovkova E.I. Fetal growth retardation. Medical tactics. Study guide. 3rd ed. Moscow: MEDpress‑inform; 2016. (in Russian)].

5. Deter R.L., Lee W., Kingdom J.C.P., Romero R. Fetal growth pathology score: a novel ultrasound parameter for individualized assessment of third trimester growth abnormalities. J. Matern. Fetal Neonatal Med. 2018; 31(7): 866‑76.

6. Vayssière C., Sentilhes L., Ego A., Bernard C., Cambourieu D., Flamant C. et al. Fetal growth restriction and intra‑uterine growth restriction: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015; 193: 10‑8.

7. Sharma D., Shastri S., Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin. Med Insights. Pediatr. 2016; 10: 67‑83.

8. Петров Ю.А., Купина А.Д. Фетальное программирование – способ предупреждения заболеваний во взрослом возрасте. Медицинский cовет. 2020; 13: 50‑6. [Petrov Yu.A., Kupina A.D. Fetal programming is a way to prevent diseases in adulthood (literature rewiew). Medical Council. 2020; (13): 50‑6. (in Russian)].‑701X‑2020‑13‑50‑56.

9. Hales C.N., Barker D.J. Type 2 (non‑insulin‑dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992; 35(7): 595‑601.

10. Yates D.T., Macko A.R., Nearing M., Chen X., Rhoads R.P., Limesand S.W. Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. J. Pregnancy. 2012; 2012: 631038.

11. Barker D.J., Martyn C.N., Osmond C., Hales C.N., Fall C.H. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993; 307(6918): 1524‑7.

12. Economides D.L., Nicolaides K.H., Linton E.A., Perry L.A., Chard T. Plasma cortisol and adrenocorticotropin in appropriate and small for gestational age fetuses. Fetal Ther. 1988; 3(3):158‑64.

13. Norman M. Low birth weight and the developing vascular tree: a systematic review. Acta Paediatr. 20080; 97(9): 1165‑72. j.1651‑2227.2008.00904.x.

14. Cosmi E., Visentin S., Fanelli T., Mautone A.J., Zanardo V. Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obstet. Gynecol. 2009; 114(5): 1109‑14. AOG.0b013e3181bb23d3.

15. Lee M.H., Jeon Y.J., Lee S.M., Park M.H., Jung S.C., Kim Y.J. Placental gene expression is related to glucose metabolism and fetal cord blood levels of insulin and insulin‑like growth factors in intrauterine growth restriction. Early Hum. Dev. 2010; 86(1): 45‑50.

16. Леонова И.А., Иванов Д.О. Фетальное программирование и ожирение у детей. Детская медицина Северо‑Запада. 2015; 6(3): 28‑41. [Leonova I.A., Ivanov D.O. Fetal programming and obesity in children. Children's medicine of the North‑West. 2015; 6(3): 28‑41. (in Russian)].

17. Musa M.G., Kagura J., Pisa P.T., Norris S.A. Relationship between early growth and CVD risk factors in adolescents. J. Dev. Orig. Health Dis. 2016; 7(2): 132‑43.

18. Mortaz M., Fewtrell M.S., Cole T.J., Lucas A. Birth weight, subsequent growth, and cholesterol metabolism in children 8‑12 years old born preterm. Arch. Dis. Child. 2001; 84(3): 212‑7.

19. Singhal A., Cole T.J., Fewtrell M., Kennedy K., Stephenson T., Elias-Jones A., Lucas A. Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation. 2007; 115(2): 213‑20.

20. Gaio P., Verlato G., Daverio M., Cavicchiolo M.E., Nardo D., Pasinato A. et al. Incidence of metabolic bone disease in preterm infants of birth weight <1250 g and in those suffering from bronchopulmonary dysplasia. Clin. Nutr. ESPEN. 2018; 23: 234‑9.

21. Raiten D.J., Steiber A.L., Carlson S.E., Griffin I., Anderson D., Hay W.W. Jr. et al. Working group reports: evaluation of the evidence to support practice guidelines for nutritional care of preterm infants‑the Pre‑B Project. Am. J. Clin. Nutr. 2016; 103(2): 648S‑78S.

22. Franz A.R., Pohlandt F., Bode H., Mihatsch W.A., Sander S., Kron M., Steinmacher J. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics. 2009; 123(1): e101‑9.‑1352.

23. Grantham-McGregor S. A review of studies of the effect of severe malnutrition on mental development. J. Nutr. 1995; 125(8, Suppl.): 2233S‑8S.

24. Chan S.H., Johnson MJ., Leaf A.A., Vollmer B. Nutrition and neurodevelopmental outcomes in preterm infants: a systematic review. Acta Paediatr. 2016; 105(6): 587‑99.

25. Blitz M.J., Rochelson B., Vohra N. Maternal serum analytes as predictors of fetal growth restriction with different degrees of placental vascular dysfunction. Clin. Lab. Med. 2016; 36(2): 353‑67.

26. Dessì A., Pravettoni C., Cesare Marincola F., Schirru A., Fanos V. The biomarkers of fetal growth in intrauterine growth retardation and large for gestational age cases: from adipocytokines to a metabolomic all‑in‑one tool. Expert Rev. Proteomics. 2015; 12(3): 309‑16. 14789450.2015.1034694.

27. Сукало А.В., Прилуцкая В.А., Солнцева А.В., Уварова Е.В. Современные представления о роли адипоцитокинов в программировании гормонально‑метаболических процессов у маловесных к сроку гестации детей. Педиатрия. Восточная Европа. 2015; 1(09): 130‑41. [Sukalo A., Prilutskaya V., Solntseva A., Uvarova E. Modern views on the role of adipocytokines in programming hormonal and metabolic processes in small for gestational age children. Pediatrics. Eastern Europe. 2015; 1(9): 130‑41. (in Russian)].

28. Palcevska-Kocevska S., Aluloska N., Krstevska M., Shukarova-Angelovska E., Kojik L., Zisovska E. et al. Correlation of serum adiponectin and leptin concentrations with anthropometric parameters in newborns. Srp. Arh. Celok. Lek. 2012; 140(9‑10): 595‑9.

29. Milenković S.J., Mirković L.B., Jovandarić M.Z., Milenković D.M., Banković V.V., Janković B.Z. Leptin and adiponectin levels in discordant dichorionic twins at 72 hours of age‑associations with anthropometric parameters and insulin resistance.J. Pediatr. Endocrinol. Metab. 2017; 30(4): 417‑26. jpem‑2016‑0352.

30. El Shemi M.S., Mohamed M.H., AbdelRahman A.O., Abdel Abdel Al. H., Ramadan N.M. Effect of intrauterine growth pattern on serum visfatin concentrations in full‑term infants at birth and at 6 months of life. J. Neonatal Perinatal Med. 2016; 9(1): 73‑82.‑16915029.

31. Malamitsi-Puchner A., Briana D.D., Boutsikou M., Kouskouni E., Hassiakos D., Gourgiotis D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics. 2007; 119(6): e1314‑8.‑2589.

32. Florio P., Marinoni E., Di., Iorio R., Bashir M., Ciotti S., Sacchi R. et al. Urinary S100B protein concentrations are increased in intrauterine growth‑retarded newborns. Pediatrics. 2006; 118(3): e747‑54. peds.2005‑2875.

33. Mazarico E., Llurba E., Cabero L., Sánchez O., Valls A., Martín-Ancel A. et al. Associations between neural injury markers of intrauterine growth‑restricted infants and neurodevelopment at 2 years of age. J. Matern. Fetal Neonatal Med. 2019; 32(19): 3197‑3203.

34. Gurugubelli Krishna R., Bhat B.V., Bobby Z., Papa D., Badhe B., Chinnakali P. Are Global DNA methylation and telomere length useful biomarkers for identifying intrauterine growth restricted neonates? J. Matern. Fetal Neonatal Med. 2021; 34(5): 761‑4.

35. Костюченко Л.Н. Медицина новой эры: персонализированный подход в нутрициологии. Фарматека. 2018; 2: 27‑35. [Kostyuchenko L.N. Medicine of the new era: personalized approach in nutritiology. Pharmateca. 2018; (2): 27‑35. (in Russian)].‑35.

36. Wishart D.S., Feunang Y.D., Marcu A., Guo A.C., Liang K., Vázquez-Fresno R. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018; 46(D1): D608‑17.

37. Lindsay K.L., Hellmuth C., Uhl O., Buss C., Wadhwa P.D., Koletzko B. et al. Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS One. 2015; 10(12): e0145794. journal.pone.0145794.

38. Dessì A., Atzori L., Noto A., Visser G.H., Gazzolo D., Zanardo V. et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J. Matern. Fetal Neonatal Med. 2011; 24 (Suppl. 2): 35‑9.

39. Barberini L., Noto A., Fattuoni C., Grapov D., Casanova A., Fenu G. et al. Urinary metabolomics (GC‑MS) reveals that low and high birth weight infants share elevated inositol concentrations at birth. J. Matern. Fetal Neonatal Med. 2014; 27 (Suppl. 2): 20‑6.

40. Favretto D., Cosmi E., Ragazzi E., Visentin S., Tucci M., Fais P. et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal. Bioanal. Chem. 2012; 402(3): 1109‑21.‑011‑5540‑z.

41. Cosmi E., Visentin S., Favretto D., Tucci M., Ragazzi E., Viel G. et al. Selective intrauterine growth restriction in monochorionic twin pregnancies: markers of endothelial damage and metabolomic profile. Twin Res. Hum. Genet. 2013; 16(4): 816‑26.

42. Horgan R.P., Broadhurst D.I., Dunn W.B., Brown M., Heazell A.E., Kell D.B. et al. Changes in the metabolic footprint of placental explant‑conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta. 2010; 31(10): 893‑901.

43. Sanz-Cortés M., Carbajo R.J., Crispi F., Figueras F., Pineda-Lucena A., Gratacós E. Metabolomic profile of umbilical cord blood plasma from early and late intrauterine growth restricted (IUGR) neonates with and without signs of brain vasodilation. PLoS One. 2013; 8(12): e80121. journal.pone.0080121.

44. Moltu S.J., Sachse D., Blakstad E.W., Strømmen K., Nakstad B., Almaas A.N. et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients. 2014; 6(5): 1913‑30.

45. Liu J., Chen X.X., Li X.W., Fu W., Zhang W.Q. Metabolomic research on newborn infants with intrauterine growth restriction. Medicine (Baltimore). 2016; 95(17): e3564.

46. Abd El-Wahed M.A., El-Farghali O.G., ElAbd H.S.A., El-Desouky E.D., Hassan S.M. Metabolic derangements in IUGR neonates detected at birth using UPLC‑MS. Egyp. J. Med. Hum. Genet. 2017; 18(3): 281‑7.

47. Wang L., Han TL., Luo X., Li S., Young T., Chen C. et al. Metabolic biomarkers of monochorionic twins complicated with selective intrauterine growth restriction in cord plasma and placental tissue. Sci. Rep. 2018; 8(1): 15914.‑018‑33788‑y.

48. Bahado-Singh R.O., Yilmaz A., Bisgin H., Turkoglu O., Kumar P., Sherman E. et al. Artificial intelligence and the analysis of multi‑platform metabolomics data for the detection of intrauterine growth restriction. PLoS One. 2019; 14(4): e0214121.

49. Stefanaki C., Peppa M., Mastorakos G., Chrousos G.P. Examining the gut bacteriome, virome, and mycobiome in glucose metabolism disorders: Are we on the right track? Metabolism. 2017; 73: 52‑66. j.metabol.2017.04.014.

50. Huang S., Li N., Liu C., Li T., Wang W., Jiang L. et al. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J. Microbiol. 2019; 57(9): 748‑58. s12275‑019‑8690‑x.

Received 15.12.2022

Accepted 07.02.2023

About the Authors

Aida P. Gasanbekova, Postgraduate Student, Academician V.I. National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia,,, 117997, Russia, Moscow, Ac. Oparin str., 4.
Natalia A. Frankevich, PhD, Senior Researcher, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia,,, 117997, Russia, Moscow, Ac. Oparin str., 4.
Vladimir E. Frankevich, Dr. Sci. (Physico-mathematical), Head of Department of Systems Biology in Reproduction, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Siberian State Medical University, Ministry of Health of Russia,,, 117997, Russia, Moscow, Ac. Oparin str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.