Possible molecular and biological mechanisms for the development of selective fetal growth restriction in monochorionic twin pregnancy

Neftereva A.A., Sakalo V.A., Gladkova K.A., Kоstyukov K.V., Khodzhaeva Z.S.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
Fetal growth restriction is a key problem of modern obstetrics, which is accompanied by high perinatal mortality and morbidity rates. Selective fetal growth restriction is a monochorionic twin pregnancy complication that occurs in 10–15% of cases and significantly increases the probability of antenatal death of one of the fetuses, as well as the development of severe neurological complications in the newborn. The perinatal risks are significantly higher in twin pregnancies than those in singlet pregnancies. The most problem pregnancy is that with monochorionic placentation, which accounts for up to 60% of all complications, while the risk of death of the other fetus and the development of neurological complications in the newborn is 3 times higher than that with a dichorionic twin pregnancy. The paper searches and analyzes the data available in the world literature on studies of the key determinants of the development of selective fetal growth restriction in monochorionic twin pregnancy. The current fundamental aspects of the pathogenesis of this process are analyzed in detail. The paper presents the possibilities of studying angiogenesis and vasculogenesis of the monochorial placenta and epigenetic factors as a predictor at the preclinical stage of selective fetal growth restriction.
Conclusion: Selective fetal growth restriction is a serious complication of monochorionic twin pregnancy, since it is associated not only with the antenatal death of a low-weight fetus, but also with a decrease in the quality of life up to childhood disability of the surviving twin. It is necessary to conduct further investigations to develop optimal management tactics for pregnant women, as well as to predict the fetuses’ condition after birth.

Keywords

monochorionic twin pregnancy
selective fetal growth restriction
angiogenic factors
epigenetic factors
chimerism

References

  1. National Collaborating Centre for Women’s and Children’s Health. Multiple pregnancy: twin and triplet pregnancies. Evidence Update. Commissioned by the National Institute for Clinical Excellence. NICE: Manchester, March 2013.
  2. Horsager R., Roberts S.W., Rogers V.L., Santiago-Muoz P.C., Worley K.C., Hoffman B.L. Williams obstetrics. Study guide. 24th ed. McGraw-Hill Education; 2014. 448p.
  3. Steenhaut P., Hubinont C. Perinatal mortality in multiple pregnancy. In: Ezechi O., ed. Perinatal mortality. InTech; 2012: 73-101.
  4. Hall J.G. Twinning. Lancet. 2003; 362(9385): 735-43. https://dx.doi.org/10.1016/S0140-6736(03)14237-7.
  5. Lewi L. Monochorionic diamniotic twins: what do I tell the prospective parents? Prenat. Diagn. 2020; 40(7): 766-75. https://dx.doi.org/10.1002/pd.5705.
  6. Santema J.G., Swaak A.M., Wallenburg H.C. Expectant management of twin pregnancy with single fetal death. Br. J. Obstet. Gynaecol. 1995; 102(1): 26-30. https://dx.doi.org/10.1111/j.1471-0528.1995.tb09021.x.
  7. Monaghan C., Kalafat E., Binder J., Thilaganathan B., Khalil A. Prediction of adverse pregnancy outcome in monochorionic diamniotic twin pregnancy complicated by selective fetal growth restriction. Ultrasound Obstet. Gynecol. 2019; 53(2): 200-7. https://dx.doi.org/10.1002/uog.19078.
  8. Bamberg C., Hecher K. Update on twin-to-twin transfusion syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2019; 58: 55-65. https://dx.doi.org/10.1016/j.bpobgyn.2018.12.011.
  9. Tollenaar L.S.A., Slaghekke F., Middeldorp J., Klumper F., Haak M., Oepkes D. Twin anemia polycythemia sequence: current views on pathogenesis, diagnostic criteria, perinatal management, and outcome. Twin Res. Hum. Genet. 2016; 1(3): 1-12. https://dx.doi.org/10.1017/thg.2016.18.
  10. Vitucci A., Fichera A., Fratelli N., Sartori E., Prefumo F. Twin reversed arterial perfusion sequence: current treatment options. Int. J. Womens Health. 2020; 12: 435-43. https://dx.doi.org/10.2147/IJWH.S214254.
  11. Чурсина О.В., Мальмберг О.Л., Зверева А.В. Пренатальная диагностика синдрома двойной артериальной перфузии при многоплодной беременности. Пренатальная диагностика. 2020; 19(1): 73-8. [Chursina O.V., Malmberg O.L., Zvereva A.V. Prenatal diagnosis of double arterial perfusion syndrome in multiple pregnancy. Prenatal Diagnosis. 2020; 19(1): 73-8. (in Russian)]. https://dx.doi.org/10.21516/2413-1458-2020-19-1-73-78.
  12. Schinzel A.A., Smith D.W., Miller J.R. Monozygotic twinning and structural defects. J. Pediatr. 1979; 95(6): 921-30. https://dx.doi.org/10.1016/s0022-3476(79)80278-4.
  13. Костюков К.В., Гладкова К.А. Перинатальные исходы при монохориальной многоплодной беременности, осложненной синдромом селективной задержки роста плода. Акушерство и гинекология. 2020; 6: 50-8. [Kostyukov K.V., Gladkova K.A. Perinatal outcomes of monochorionic multiple pregnancies with selective intrauterine growth restriction. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2020; 6: 50-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.6.50-58.
  14. Valsky D.V., Eixarch E., Martinez J.M., Crispi F., Gratacós E. Selective intrauterine growth restriction in monochorionic twins: pathophysiology, diagnostic approach and management dilemmas. Semin. Fetal Neonat. Med. 2010; 15(6): 342-8. https://dx.doi.org/10.1016/j.siny.2010.07.002.
  15. Gratacós E., Carreras E., Becker J., Lewi L., Enríquez G., Perapoch J. et al. Prevalence of neurological damage in monochorionic twins with selective intrauterine growth restriction and intermittent absent or reversed end-diastolic umbilical artery flow. Ultrasound Obstet. Gynecol. 2004; 24(2): 159-63. https://dx.doi.org/10.1002/uog.1105.
  16. Ortibus E., Lopriore E., Deprest J., Vandenbussche F.P., Walther F.J., Diemert A. et al. The pregnancy and long-term neurodevelopmental outcome of monochorionic diamniotic twin gestations: a multicenter prospective cohort study from the first trimester onward. Am. J. Obstet. Gynecol. 2009; 200(5): 494.e1-8. https://dx.doi.org/10.1016/j.ajog.2009.01.048.
  17. Костюков К.В., Сакало В.А., Гладкова К.А. Прогнозирование специфических осложнений монохориальной многоплодной беременности в I триместре. Акушерство и гинекология. 2019; 12: 36-44. [Kostyukov K.V., Sakalo V.A., Gladkova K.A. Prediction of specific complications of monochorionic multiple pregnancy in the first trimester. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2019; 12: 36-44. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.12.36-44.
  18. D’Antonio F., Familiari A., Thilaganathan B., Papageorghiou A.T., Manzoli L., Khalil A. et al. Sensitivity of first-trimester ultrasound in the detection of congenital anomalies in twin pregnancies: population study and systematic review. Acta Obstet. Gynecol. Scand. 2016; 95(12): 1359-67. https://dx.doi.org/10.1111/aogs.13017.
  19. Костюков К.В., Гладкова К.А. Диагностика синдрома селективной задержки роста плода, синдрома обратной артериальной перфузии при монохориальной многоплодной беременности. Акушерство и гинекология. 2016; 2: 14-8. [Kostyukov K.V., Gladkova K.A. Diagnosis of selective fetal growth restriction syndrome and reversed arterial perfusion in monochorionic multiple pregnancy. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; 2: 14-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2016.2.14-18.
  20. Blickstein I., Perlman S. Single fetal death in twin gestations. J. Perinat. Med. 2013; 41(1): 65-9. https://dx.doi.org/10.1515/jpm-2012-0019.
  21. Фаткуллин И.Ф., Ахмадеев Н.Р. Многоплодная беременность: как улучшить исходы. StatusPraesens. Гинекология, акушерство, бесплодный брак. 2013; 1: 82-8. [Fatkullin I.F., Akhmadeev N.R. Multiple pregnancies: how to improve outcomes. StatusPraesens. Gynecology, Obstetrics, Barren marriage. 2013; 1: 82-8 (in Russian)].
  22. Bennasar M., Eixarch E., Martinez J.M., Gratacós E. Selective intrauterine growth restriction in monochorionic diamniotic twin pregnancies. Semin. Fetal Neonatal Med. 2017; 22(6): 376-82. https://dx.doi.org/10.1016/j.siny.2017.05.001.
  23. Vayssière C., Sentilhes L., Ego A., Bernard C., Cambourieu D., Flamant C. et al. Fetal growth restriction and intra-uterine growth restriction: guidelines for clinical practice from the French College of Gynaecologists and Obstetricians. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015; 193: 10-8. https://dx.doi.org/10.1016/j.ejogrb.2015.06.021.
  24. Loke Y.J., Novakovic B., Ollikainen M., Wallace E.M., Umstad M.P., Permezel M. et al. The peri/postnatal epigenetic twins study (PETS). Twin Res. Hum. Genet. 2013; 16(1): 13-20. https://dx.doi.org/10.1017/thg.2012.114.
  25. Wu J., He Z., Gao Y., Zhang G., Huang X., Fang Q. Placental NFE2L2 is discordantly activated in monochorionic twins with selective intrauterine growth restriction and possibly regulated by hypoxia. Free Radic. Res. 2017; 51(4): 351-9. https://dx.doi.org/ 10.1080/10715762.2017.1315113.
  26. Maged A.M., Torky H., Fouad M.A., GadAllah S.H., Waked N.M., Gayed A.S. et al. Role of antioxidants in gestational diabetes mellitus and relation to fetal outcome: a randomized controlled trial. J. Matern. Fetal Neonatal Med. 2016; 29(24): 4049-54. https://dx.doi.org/ 10.3109/14767058.2016.1154526.
  27. Mert I., Oruc A.S., Yuksel S., Cakar E.S., Buyukkagnici U., Karaer A. et al. Role of oxidative stress in preeclampsia and intrauterine growth restriction. J. Obstet. Gynaecol. Res. 2012; 38(4): 658-64. https://dx.doi.org/10.1111/j.1447-0756.2011.01771.x.
  28. Yinon Y., Ben Meir E., Berezowsky A., Weisz B., Schiff E., Mazaki-Tovi S. et al. Circulating angiogenic factors in monochorionic twin pregnancies complicated by twin-to-twin transfusion syndrome and selective intrauterine growth restriction. Am. J. Obstet. Gynecol. 2014; 210(2): 141.e1-7. https://dx.doi.org/10.1016/j.ajog.2013.09.022.
  29. Kaufmann P., Mayhew T.M., Charnock-Jones D.S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004; 25(2-3): 114-26. https://dx.doi.org/10.1016/j.placenta.2003.10.009.
  30. Sakian S., Louie K., Wong E.C., Havelock J., Kashyap S., Rowe T. et al. Altered gene expression of H19 and IGF2 in placentas from ART pregnancies. Placenta. 2015; 36(10): 1100-5. https://dx.doi.org/10.1016/j.placenta.2015.08.008.
  31. Chen J., Pan S., Hang L., Zhong M., Yu Y. Placental expression of PHLDA2 and IGF2 in selective intrauterine growth restriction in monozygotic twins. Int. J. Clin. Exp. Pathol. 2018; 11(2): 876-81.
  32. Du T., Zamore P.D. Beginning to understand microRNA function. Cell Res. 2007; 17(8): 661-3. https://dx.doi.org/10.1038/cr.2007.67.
  33. Lu M., Zhang Q., Deng M., Miao J., Guo Y., Gao W. et al. An analysis of human microRNA and disease associations. PLoS One. 2008; 3(10): e3420. https://dx.doi.org/10.1371/journal.pone.0003420.
  34. Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016; 137: 126-40. https://dx.doi.org/10.1016/j.thromres.2015.11.032.
  35. Mouillet J.-F., Ouyang Y., Coyne C.B., Sadovsky Y. MicroRNAs in placental health and disease. Am. J. Obstet. Gynecol. 2015; 213(4, Suppl.): S163-72. https://dx.doi.org/10.1016/j.ajog.2015.05.057.
  36. Duarte F.V., Palmeira C.M., Rolo A.P. The role of microRNAs in mitochondria: small players acting wide. Genes (Basel). 2014; 5(4): 865-86. https://dx.doi.org/10.3390/genes5040865.
  37. Zhao Z., Moley K.H., Gronowski A.M. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin. Biochem. 2013; 46(10-11): 953-60. https://dx.doi.org/10.1016/j.clinbiochem.2013.01.026.
  38. Wen H., Hu Y., Chen L., Zhao L., Yang X. miR-338-5p targets epidermal growth factor-containing fibulin-like extracellular matrix protein 1 to inhibit the growth and invasion of trophoblast cells in selective intrauterine growth restriction. Reprod. Sci. 2020; 27(6): 1357-64. https://dx.doi.org/10.1007/s43032-020-00160-3.
  39. Zhang Y., Marmorstein L.Y. Focus on molecules: fibulin-3 (EFEMP1). Exp. Eye Res. 2010; 90(3): 374-5. https://dx.doi.org/10.1016/j.exer.2009.09.018.
  40. Li L., Huang X., He Z., Xiong Y., Fang Q. miRNA‐210‐3p regulates trophoblast proliferation and invasiveness through fibroblast growth factor 1 in selective intrauterine growth restriction. J. Cell. Mol. Med. 2019; 23(6): 4422-33. https://dx.doi.org/10.1111/jcmm.14335.
  41. Wen H., Chen L., He J., Lin J. MicroRNA expression profiles and networks in placentas complicated with selective intrauterine growth restriction. Mol. Med. Rep. 2017; 16(5): 6650-73. https://dx.doi.org/10.3892/mmr.2017.7462.
  42. Li W., Chung C.Y.L., Wang C.C., Chan T.F., Leung M.B.W., Chan O.K. et al. Monochorionic twins with selective fetal growth restriction: insight from placental whole-transcriptome analysis. Am. J. Obstet. Gynecol. 2020; 223(5): 749.e1-749.e16. https://dx.doi.org/10.1016/j.ajog.2020.05.008.
  43. Lee H.-C., Wei Y.-H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol. 2005; 37(4): 822-34. https://dx.doi.org/10.1016/j.biocel.2004.09.010.
  44. Chang Y.-L., Chao A.S., Peng H.H., Chang S.D., Su S.Y., Chen K.J. et al. Effects of inter-twin vascular anastomoses of monochorionic twins with selective intrauterine growth restriction on the contents of placental mitochondria DNA. BMC Pregnancy Childbirth. 2018; 18(1): 74. https://dx.doi.org/10.1186/s12884-018-1702-8.
  45. Meng M., Cheng Y.K.Y., Wu L., Chaemsaithong P., Leung M.B.W., Chim S.S.C. et al. Whole genome miRNA profiling revealed miR-199a as potential placental pathogenesis of selective fetal growth restriction in monochorionic twin pregnancies. Placenta. 2020; 92: 44-53. https://dx.doi.org/10.1016/j.placenta.2020.02.002.
  46. Lynch S.M., Ward M., McNulty H., Angel C.Z., Horigan G., Strain J.J. et al. Serum levels of miR-199a-5p correlates with blood pressure in premature cardiovascular disease patients homozygous for the MTHFR 677C>T polymorphism. Genomics. 2020; 112(1): 669-76. https://dx.doi.org/10.1016/j.ygeno.2019.04.019.
  47. Shukla A., Sehgal M., Singh T.R. Hydroxymethylation and its potential implication in DNA repair system: a review and future perspectives. Gene. 2015; 564(2): 109-18. https://dx.doi.org/10.1016/j.gene.2015.03.075.
  48. He Z., Lu H., Luo H., Gao F., Wang T., Gao Y. et al. The promoter methylomes of monochorionic twin placentas reveal intrauterine growth restriction-specific variations in the methylation patterns. Sci. Rep. 2016; 20181. https://dx.doi.org/10.1038/srep20181.
  49. Yang X., Cheng Y., Su G. A review of the multifunctionality of angiopoietin-like 4 in eye disease. Biosci. Rep. 2018; 38(5): BSR20180557. https://dx.doi.org/10.1042/BSR20180557.
  50. Ge L., Yu D., Su R., Cao Y. Effects of hypoxia-inducible factor 1α on hypoxic tolerance of human amniotic mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018; 32(3): 264-9. https://dx.doi.org/10.7507/1002-1892.201710104.
  51. Zhang T., Kastrenopoulou A., Larrouture Q., Athanasou N.A., Knowles H.J. Angiopoietin-like 4 promotes osteosarcoma cell proliferation and migration and stimulates osteoclastogenesis. BMC Cancer. 2018; 18(1): 536. https://dx.doi.org/10.1186/s12885-018-4468-5.
  52. Zhang Y., Zheng D., Fang Q., Zhong M. Aberrant hydroxymethylation of ANGPTL4 is associated with selective intrauterine growth restriction in monochorionic twin pregnancies. Epigenetics. 2020; 15(8): 887-99. https://dx.doi.org/10.1080/15592294.2020.1737355.
  53. Chen K., Chmait R.H., Vanderbilt D., Wu S., Randolph L. Chimerism in monochorionic dizygotic twins: сase study and review. Am. J. Med. Genet. A. 2013; 161A(7): 1817-24. https://dx.doi.org/10.1002/ajmg.a.35957.
  54. Parva M., Donnenfeld A.E., Gerson A. Trizygotic dichorionic triplets with 46,XX/46,XY chimerism in both fetuses of the monochorionic pair. Prenat. Diagn. 2009; 29(11): 1091-3. https://dx.doi.org/10.1002/pd.2368.

Received 16.07.2021

Accepted 07.09.2021

About the Authors

Alina A. Neftereva, clinical resident, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology,
Ministry of Healthcare of Russian Federation, +7(915)605-94-90, nefterevaalina@mail.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Victoria A. Sakalo, doctor of the 1st Obstetric Department of Pregnancy Pathology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, +7(929)588-72-08, v_sakalo@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Kristina A. Gladkova, Ph.D, Senior Researcher of the Fetal Medicine Unit, Institute of Obstetrics, Head of the 1st Obstetric Department of Pregnancy Pathology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation,
+7(916)321-10-07, k_gladkova@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Kirill V. Kostyukov, PhD, Senior Researcher of the Fetal Medicine Unit, Institute of Obstetrics, doctor of the Department of the Ultrasound and Functional Diagnosis, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation,
+7(926)214-97-84, kostyukov_k@yahoo.com, 117997, Russia, Moscow, Ac. Oparina str., 4.
Zulfiya S. Khodzhaeva, Dr. Med. Sci., Professor, Deputy director of Obstetrics Institute, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, +7(916)407-75-67, zkhodjaeva@mail.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.

Authors’ contributions: Neftereva A.A., Khodzhaeva Z.S. – choosing a research topic; Neftereva A.A., Sakalo V.A., Gladkova K.A., Kоstyukov K.V. – searching for literature data; Neftereva A.A., Sakalo V.A. – writing the manuscript
in the article; Khodzhaeva Z.S., Gladkova K.A. – writing and editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The investigation was conducted within the framework of State Assignment No. 21-A21,
State Registration No. 121040600434-3.
For citation: Neftereva A.A., Sakalo V.A., Gladkova K.A., Kоstyukov K.V., Khodzhaeva Z.S. Possible molecular and biological mechanisms for the development
of selective fetal growth restriction in monochorionic twin pregnancy.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 10: 5-12 (in Russian)
https://dx.doi.org/10.18565/aig.2021.10.5-12

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.