ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

The possibilities of using machine learning and artificial intelligence methods for morphological analysis of the placenta

Tumanova U.N., Tumanov N.A., Shchegolev A.I., Serov V.N.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

Morphological examination of the placenta is an essential part of its pathology examination as it is possible to identify pathological processes and lesions that may recur in subsequent pregnancies.
The aim of the work is to analyze literature data and the results of our own research on the possibilities of using machine analysis and artificial intelligence to assess morphological changes in the placenta.
The available literature data demonstrate the potential of applying methods of digital pathology, machine learning, and artificial intelligence. Currently, there are three main areas of morphological studies into the placenta: automated analysis of histological samples, identification of cell and tissue types, and determination of any existing lesions or pathological processes. The paper describes the possibilities of recognizing and differentiating 11 types of cells and 9 types of tissue structures, including 5 types of villi. It also discusses the opportunity to detect individual or group lesions such as villous infarction, intervillous space thrombosis, decidual vasculopathy, and chorioamnionitis. The article provides the information on the differential diagnosis of morphological changes in the placenta during preeclampsia and fetal growth retardation.
Conclusion: The analysis of literature data showed that machine (computer) analysis and artificial intelligence have a number of advantages over conventional morphological studies for morphological analysis of the placenta: the analysis of the images requires a shorter period of time, there is a quantitative and independent evaluation of the entire image at once, rather than separate fields of view at different magnifications, machine learning algorithms and artificial intelligence can be used to obtain a conclusion. It is necessary to continue developing and implement these methods in practice on a large scale.

Authors’ contributions: Tumanova U.N., Tumanov N.A. – search for publications, analysis of publication data, writing the text of the manuscript; Shchegolev A.I. – developing the design of the study, analysis of publication data, writing the manuscript text; Serov V.N. – developing the design of the study, analysis of publication data, editing the manuscript text.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was carried out without sponsorship. 
For citation: Tumanova U.N., Tumanov N.A., Shchegolev A.I., Serov V.N. The possibilities of 
using machine learning and artificial intelligence methods for morphological analysis of the placenta.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (6): 84-93 (in Russian)
https://dx.doi.org/10.18565/aig.2025.127

Keywords

placenta
morphology
pathology
machine learning
artificial intelligence

References

  1. Туманова У.Н., Щеголев А.И. Поражения плаценты в генезе мертворождения (обзор литературы). Международный журнал прикладных и фундаментальных исследований. 2017; 3-1: 77-81. [Tumanova U.N., Shchegolev A.I. Placental lesions as the cause of stillbirth (review). International Journal of Applied and Fundamental Research. 2017; 3-1: 77-81. (in Russian)]. https://dx.doi.org/10.17513/mjpfi.11403
  2. Щеголев А.И., Серов В.Н. Клиническая значимость поражений плаценты. Акушерство и гинекология. 2019; 3: 54-62. [Shchegolev A.I., Serov V.N. Clinical significance of placental lesions. Obstetrics and Gynecology. 2019; (3): 54-62. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.3.54-62
  3. Redline R.W. Placental pathology: a systematic approach with clinical correlations. Placenta. 2008; 29 (Suppl. A): S86-91. https://dx.doi.org/10.1016/j.placenta.2007.09.003 3
  4. Redline R.W. Classification of placental lesions. Am. J. Obstet. Gynecol. 2015; 213(4 Suppl.): S21-8. https://dx.doi.org/10.1016/j.ajog.2015.05.056
  5. Mestan K.K., Leibel S.L., Sajti E., Pham B., Hietalati S., Laurent L. et al. Leveraging the placenta to advance neonatal care. Front. Pediatr. 2023; 11: 1174174. https://dx.doi.org/10.3389/fped.2023.1174174
  6. Ernst L.M., Carreon C.K. Placenta. In: Ernst L., Ruchelli E., Carreon C., Huff D., eds. Color atlas of human fetal and neonatal histology. Springer Cham; 2019: 399-424. https://dx.doi.org/10.1007/978-3-030-11425-1_36
  7. Heerema-McKenney A. Placental development with expected normal gross and microscopic findings. In: Khong T., Mooney E., Nikkels P., Morgan T., Gordijn S., eds. Pathology of the placenta. Springer Cham; 2019: 9-29. https://dx.doi.org/10.1007/978-3-319-97214-5_2
  8. Huppertz B., Peeters L.L. Vascular biology in implantation and placentation. Angiogenesis. 2005; 8(2): 157-67. https://dx.doi.org/10.1007/s10456-005-9007-8
  9. Huppertz B. Placental development with histological aspects. In: Huppertz B., Schleußner E., eds. The placenta: Basics and clinical significance. Berlin, Heidelberg: Springer; 2023: 1-27. https://dx.doi.org/10.1007/978-3-662-66256-4_1
  10. Лебедев Г.С., Шадеркин И.А., Тертычный А.С., Шадеркина А.И. Цифровая патоморфология: создание системы автоматизированной микроскопии. Российский журнал телемедицины и электронного здравоохранения. 2021; 7(4): 27-47. [Lebedev G.S., Shaderkin I.A., Tertychny A.S., Shaderkina A.I. Digital pathomorphology: creation of an automated microscopy system. Russian Journal of Telemedicine and E-Health. 2021; 7(4): 27-47. (in Russian)]. https://dx.doi.org/10.29188/2712-9217-2021-7-4-27-47
  11. Ремез А.И., Журавлев А.С., Фаттахов A.О., Павлова В.А. Цифровая патология в России: опыт и перспективы. РМЖ. Медицинское обозрение. 2018; 6: 19-21. [Remez A.I., Zhuravlev A.S., Fattakhov A.O., Pavlova V.A. Digital pathology in Russia: experience and perspectives. RMJ. Medical Review. 2018; (6): 19-21. (in Russian)].
  12. Ferlaino M., Glastonbury C., Motta-Mejia C., Vatish M., Granne I., Kennedy S. et al. Towards deep cellular phenotyping in placental histology. 1st Conference on medical imaging with deep learning. Amsterdam; 2018. 19 p.
  13. Rohith E., Sowmya V., Soman K.P. Convolutional neural networks for placenta cell classification. 2nd International conference on intelligent computing, instrumentation and control technologies (ICICICT). 2019: 1273-77. https://dx.doi.org/10.1109/ICICICT46008.2019.8993145
  14. Vanea C., Dˇzigurski J., Rukins V., Dodi O., Siigur S., Salumäe L. et al. HAPPY: A deep learning pipeline for mapping cell-to-tissue graphs across placenta histology whole slide images. bioRxiv preprint. https://dx.doi.org/10.1101/2022.11.21.517353
  15. Щеголев А.И., Туманова У.Н., Ляпин В.М., Серов В.Н. Синцитиотрофобласт ворсин плаценты в норме и при преэклампсии. Акушерство и гинекология. 2020; 6: 21-8. [Shchegolev A.I., Tumanova U.N., Lyapin V.N., Serov V.N. The syncytiotrophoblast of the placental villi in health and in preeclampsia. Obstetrics and Gynecology. 2020; (6): 21-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.6.21-28
  16. Zhou J., Yan P., Ma W., Li J. Cytokine modulation and immunoregulation of uterine NK cells in pregnancy disorders. Cytokine Growth Factor Rev. 2025; 81: 40-53. https://dx.doi.org/10.1016/j.cytogfr.2024.11.007
  17. Kulikova G.V., Ziganshina M.M., Shchegolev A.I., Sukhikh G.T. Comparative characteristics of the expression of fucosylated glycans and morphometric parameters of terminal placental villi depending on the severity of preeclampsia. Bull. Exp. Biol. Med. 2021; 172(1): 90-5. https://dx.doi.org/10.1007/s10517-021-05338-6
  18. Щеголев А.И., Ляпин В.М., Туманова У.Н., Воднева Д.Н., Шмаков Р.Г. Гистологические изменения плаценты и васкуляризация ее ворсин при ранней и поздней преэклампсии. Архив патологии. 2016; 1: 13-8. [Shchegolev A.I., Lyapin V.M., Tumanova U.N., Vodneva D.N., Shmakov R.G. Histological hanges in the placenta and vascularization of its villi in early- and late-onset preeclampsia. Arhiv patologii. 2016; 1: 13-8. (in Russian)]. https://dx.doi.org/10.17116/patol201678113-18
  19. Dubova E.A., Pavlov K.A., Lyapin V.M., Shchyogolev A.I., Sukhikh G.T. Vascular endothelial growth factor and its receptors in the placental villi of pregnant patients with pre-eclampsia. Bull. Exp. Biol. Med. 2013; 154(6): 792-5. https://dx.doi.org/10.1007/s10517-013-2058-8
  20. Shchyogolev A.I., Dubova E.A., Pavlov K.A., Lyapin V.M., Kulikova G.V., Shmakov R.G. Morphometric characteristics of terminal villi of the placenta in pre-eclampsia. Bull. Exp. Biol. Med. 2012; 154(1): 92-5. https://dx.doi.org/10.1007/s10517-012-1883-5
  21. Воднева Д.Н., Романова В.В., Дубова Е.А., Павлов К.А., Шмаков Р.Г., Щеголев А.И. Клинико-морфологические особенности ранней и поздней преэклампсии. Акушерство и гинекология. 2014; 2: 35-40. [Vodneva D.N., Romanova V.V., Dubova E.A., Pavlov K.A., Shmakov R.G., Shchegolev A.I. The clinical and morphological features of early- and late-onset preeclampsia. Obstetrics and Gynecology. 2014; (2): 35-40. (in Russian)].
  22. Shchegolev A.I., Kulikova G.V., Lyapin V.M., Shmakov R.G., Sukhikh G.T. The number of syncytial knots and VEGF expression in placental villi in parturient woman with COVID-19 depends on the disease severity. Bull. Exp. Biol. Med. 2021; 171(3): 399-403. https://dx.doi.org/10.1007/s10517-021-05236-x
  23. Reyes L., Wolfe B., Golo T. Hofbauer cells: Placental macrophages of fetal origin. In: Kloc M., ed. Macrophages, results and problems in cell differentiation. Springer International Publishing AG; 2017: 45-60. https://dx.doi.org/10.1007/978-3-319-54090-0_3
  24. Fitzgerald E., Shen M., Yong H.E.J., Wang Z., Pokhvisneva I., Patel S. et al. Hofbauer cell function in the term placenta associates with adult cardiovascular and depressive outcomes. Nat. Commun. 2023; 14(1): 7120. https://dx.doi.org/10.1038/s41467-023-42300-8
  25. Tang Z., Buhimschi I.A., Buhimschi C.S., Tadesse S., Norwitz E., Niven-Fairchild T. et al. Decreased levels of folate receptor-beta and reduced numbers of fetal macrophages (Hofbauer cells) in placentas from pregnancies with severe pre-eclampsia. Am. J. Reprod. Immunol. 2013; 70(2): 104-15. https://dx.doi.org/10.1111/aji.12112
  26. Борис Д.А., Тютюнник В.Л., Кан Н.Е., Щеголев А.И., Синицына В.А., Садекова А.А., Красный А.М. Особенности изменения клеток моноцитарно-макрофагального звена в плаценте при преэклампсии. Акушерство и гинекология. 2021; 10: 48-54. [Boris D.A., Tyutyunnik V.L., Kan N.E., Shchegolev A.I., Sinitsyna V.A., Sadekova A.A., Krasnyi A.A. Features of changes in the monocyte-macrophage cells in the placenta during preeclampsia. Obstetrics and Gynecology. 2019; (3): 54-62. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.10.48-54
  27. Ben Amara A., Gorvel L., Baulan K., Derain-Court J., Buffat C., Verollet C. et al. Placental macrophages are impaired in chorioamnionitis, an infectious pathology of the placenta. J. Immunol. 2013; 191: 5501-14. https://dx.doi.org/10.4049/jimmunol.1300988
  28. Reyes L., Golos T.G. Hofbauer cells: Their role in healthy and complicated pregnancy. Front. Immunol. 2018; 9: 2628. https://dx.doi.org/10.3389/fimmu.2018.02628
  29. Ziganshina M.M., Kulikova G.V., Fayzullina N.M., Yarotskaya E.L., Shchegolev A.I., Shilova N.V. et al. Expression of fucosylated glycans in endothelial glycocalyces of placental villi at early and late fetal growth restriction. Placenta. 2020; 90: 98-102. https://dx.doi.org/10.1016/j.placenta.2019.12.005
  30. Dubova E.A., Alieva L.B., Baibarina E.N., Burkova A.S., Antonov A.G., Nagovitsyna M.N. et al. Morphology of placental villi and development of hemorrhages in very small preterm newborns. Bull. Exp. Biol. Med. 2012; 153(3): 389-92. https://dx.doi.org/10.1007/s10517-012-1723-7
  31. Щеголев А.И., Туманова У.Н., Серов В.Н. Роль плаценты в развитии поражений головного мозга новорожденного. Акушерство и гинекология. 2023; 8: 38-47. [Shchegolev A.I., Tumanova U.N., Serov V.N. The role of the placenta in the development of neonatal brain lesions. Obstetrics and Gynecology. 2019; (3): 54-62. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.185
  32. Nizyaeva N.V., Sukhacheva T.V., Kulikova G.V., Nagovitsyna M.N., Poltavtseva R.A., Kan N.E. et al. Ultrastructural characteristics of placental telocytes. Bull. Exp. Biol. Med. 2017; 162(5): 693-8. https://dx.doi.org/10.1007/s10517-017-3690-5
  33. Nizyaeva N.V., Sukhacheva T.V., Serov R.A., Kulikova G.V., Nagovitsyna M.N., Kan N.E. et al. Ultrastructural and immunohistochemical features of telocytes in placental villi in preeclampsia. Sci. Rep. 2018; 8(1): 3453. https://dx.doi.org/10.1038/s41598-018-21492-w
  34. Низяева Н.В., Щёголев А.И., Марей М.В., Сухих Г.Т. Интерстициальные пейсмекерные клетки. Вестник РАМН. 2014; 7-8: 17-24. [Nizyaeva N.V., Shchegolev A.I. Marey M.V., Sukhikh G.T. Interstitial pacemaker cells. Annals of the Russian Academy of Medical Sciences. 2014; 7-8:17-24. (in Russian)]. https://dx.doi.org/10.15690/vramn.v69i7-8.1105
  35. Chou T., Goldstein J.A. How can artificial intelligence models advance placental biology? Placenta. 2025: S0143-4004(25)00081-5. doi: 10.1016/j.placenta.2025.03.010
  36. Huppertz B. The anatomy of the normal placenta. J. Clin. Pathol. 2008; 61(12): 1296-1302. https://dx.doi.org/10.1136/jcp.2008.055277
  37. Vanea C., Džigurski J., Rukins V., Dodi O., Siigur S., Salumäe L. et al. Mapping cell-to-tissue graphs across human placenta histology whole slide images using deep learning with HAPPY. Nat. Commun. 2024; 15(1): 2710. https://dx.doi.org/10.1038/s41467-024-46986-2
  38. Mobadersany P., Cooper L.A.D., Goldstein J.A. GestAltNet: aggregation and attention to improve deep learning of gestational age from placental whole-slide images. Lab. Invest. 2021; 101(7): 942-51. https://dx.doi.org/10.1038/s41374-21-00579-5
  39. Goldstein J.A., Nateghi R., Cooper L.A.D. Machine learning assessment of gestational age in accelerated maturation, delayed maturation, villous edema, chorangiosis, and intrauterine fetal demise. Arch. Pathol. Lab. Med. 2025; 149(6): 503-10. https://dx.doi.org/10.5858/arpa.2024-0274-OA
  40. Щеголев А.И. Современная морфологическая классификация повреждений плаценты. Акушерство и гинекология. 2016; 4: 16-23. [Shchegolev A.I. Current morphological classification of damages to the placenta. Obstetrics and Gynecology. 2016; (4): 16-23. (in Russian)]. https://dx.doi.org/10.18565/aig.2016.4.16-23
  41. Stevens D.U., Al-Nasiry S., Bulten J., Spaanderman M.E. Decidual vasculopathy and adverse perinatal outcome in preeclamptic pregnancy. Placenta. 2012; 33(8): 630-3. https://dx.doi.org/10.1016/j.placenta.2012.04.013
  42. Clymer D., Kostadinov S., Catov J., Skvarca L., Pantanowitz L., Cagan J. et al. Decidual vasculopathy identification in whole slide images using multiresolution hierarchical convolutional neural networks. Am. J. Pathol. 2020; 190(10): 2111-22. https://dx.doi.org/10.1016/j.ajpath.2020.06.014
  43. Becroft D.M., Thompson J.M., Mitchell E.A. The epidemiology of placental infarction at term. Placenta. 2002; 23(4): 343-51. https://dx.doi.org/10.1053/plac.2001.0777
  44. Goldstein J.A., Nateghi R., Irmakci I., Cooper L.A.D. Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta. 2023; 135: 43-50. https://dx.doi.org/10.1016/j.placenta.2023.03.003
  45. Jung Y.M., Park S., Ahn Y., Kim H., Kim E.N., Park H.E. et al. Identification of preeclamptic placenta in whole slide images using artificial intelligence placenta analysis. J. Korean Med. Sci. 2024; 39(39): e271. https://dx.doi.org/10.3346/jkms.2024.39.e271
  46. Jacobs A., Al-Juboori S.I., Dobrinskikh E., Bolt M.A., Sammel M.D., Lijewski V. et al. Placental differences between severe fetal growth restriction and hypertensive disorders of pregnancy requiring early preterm delivery: morphometric analysis of the villous tree supported by artificial intelligence. Am. J. Obstet. Gynecol. 2024; 231(5): 552.e1-552.e13. https://dx.doi.org/10.1016/j.ajog.2024.02.291
  47. Chou T., Senkow K.J., Nguyen M.B., Patel P.V., Sandepudi K., Cooper L.A. et al. Quantitative modeling to characterize maternal inflammatory response of histologic chorioamnionitis in placental membranes. Am. J. Reprod. Immunol. 2024; 92(4): e13944. https://dx.doi.org/10.1111/aji.13944
  48. Sharma A., Nateghi R., Ayad M., Cooper L.A.D., Goldstein J.A. Machine learning identification of maternal inflammatory response and histologic choroamnionitis from placental membrane whole slide images. arXiv:2411.02354. https://dx.doi.org/10.48550/arXiv.2411.02354
  49. Ayad M.A., Nateghi R., Sharma A., Chillrud L., Seesillapachai T., Chou T. et al. Deep learning for fetal inflammatory response diagnosis in the umbilical cord. Placenta. 2025; 167: 1-10. https://dx.doi.org/10.1016/j.placenta.2025.04.013
  50. Щеголев А.И., Туманова У.Н., Серов В.Н. Хориоамнионит: диагностика и роль в развитии осложнений беременности и плода. Акушерство и гинекология. 2024; 2: 5-14. [Shchegolev A.I., Tumanova U.N., Serov V.N. Chorioamnionitis: diagnosis and role in complications during pregnancy and fetal development. Obstetrics and Gynecology. 2024; (2): 5-14. (in Russian)]. https://dx.doi.org/10.18565/aig.2024.10
  51. Catov J., Muldoon M., Gandley R., Brands J., Hauspurg A., Hubel C.A. et al. Maternal vascular lesions in the placenta predict vascular impairments a decade after delivery. Hypertension. 2022; 79 (2): 424-34. https://dx.doi.org/10.1161/HYPERTENSIONAHA.121.18394
  52. Liu Z., Tang Z., Li J., Yang Y. Effects of placental inflammation on neonatal outcome in preterm infants. Pediatr. Neonatol. 2014; 55(1): 35-40. https://dx.doi.org/10.1016/j.pedneo.2013.05.007
  53. Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Сравнительный анализ мертворождаемости в Российской Федерации в 2010 и 2012 гг. Российский вестник перинатологии и педиатрии. 2015; 3: 58-62. [Shchegolev A.I., Tumanova U.N., Shuvalova M.P., Frolova O.G. Comparative analysis of stillbirth rates in the Russian Federation in 2010 and 2012. Russian Bulletin of Perinatology and Pediatrics. 2015; 3: 58-62. (in Russian)].
  54. Туманова У.Н., Шувалова М.П., Щеголев А.И. Хориоамнионит и ранняя неонатальная смертность (по данным Росстата в 2012–2016 годах). Международный журнал прикладных и фундаментальных исследований. 2018; 8: 49-53. [Tumanova U.N., Shuvalova M.P., Shchegolev A.I. Chorioamnionitis and early neonatal mortality (according to Rosstat in 2012–2016). International Journal of Applied and Fundamental Research. 2018; 8: 49-53. (in Russian)]. https://dx.doi.org/10.17513/mjpfi.12363
  55. Щеголев А.И., Туманова У.Н., Ляпин В.М. Нарушения структуры и васкуляризации ворсин плаценты при задержке роста плода. Современные проблемы науки и образования. 2018; 4: 231. [Schegolev A.I., Tumanova U.N., Lyapin V.M. Disorder of the structure and vascularization of the villi of placenta at the fetal growth restriction. Modern problems of science and education. 2018; 4: 231. (in Russian)]. https://dx.doi.org/10.17513/spno.27921
  56. Щеголев А.И., Туманова У.Н., Ляпин В.М. Нарушения структуры и васкуляризации ворсин плаценты при преэклампсии. Гинекология. 2018; 20(4): 12-8. [Shchegolev A.I., Tumanova U.N., Lyapin V.M. Disorder of the structure and vascularization of the villi of placenta at the preeclampsia. Gynecology. 2018; 20(4: 12-8. (in Russian)]. https://dx.doi.org/10.26442/2079-5696_2018.4.12-18
  57. Dubova E.A., Pavlov K.A., Yesayan R.M., Nagovitsyna M.N., Tkacheva O.N., Shestakova M.V. et al. Morphometric characteristics of placental villi in pregnant women with diabetes. Bull. Exp. Biol. Med. 2011; 151(5): 650-4. https://dx.doi.org/10.1007/s10517-011-1406-9
  58. Dubova E.A., Pavlov K.A., Borovkova E.I., Bayramova M.A., Makarov I.O., Shchegolev A.I. Vascular endothelial growth factor and its receptors in the placenta of pregnant women with obesity. Bull. Exp. Biol. Med. 2011; 151(2): 253-8. https://dx.doi.org/10.1007/s10517-011-1302-3
  59. Щеголев А.И., Дубова Е.А., Павлов К.А., Есаян Р.М., Шестакова М.В., Сухих Г.Т. Сравнительная иммуногистохимическая оценка фактора роста эндотелия сосудов и его рецепторов в ворсинах плаценты при гестационном и сахарном диабете 1-го типа. Архив патологии. 2013; 5: 13-8. [Shchegolev A.I., Dubova E.A., Pavlov K.A., Esayan R.M., Sukhikh G.T., Shestakova M.V. Comparative immunohistochemical assessment of vascular endothelial growth factor and its receptors in placental villi in gestational and type 1 diabetes mellitus. Arhiv patologii. 2013; 5: 13-8. (in Russian)].
  60. Borovkova E.I., Shchegolev A.I. Vascular endothelial growth factor and its receptors in the placenta of gravidas with obesity. Research Journal of Pharmacy and Technology. 2018; 11(3): 1153-8. https://dx.doi.org/10.5958/0974-360X.2018.00215.9
  61. Kothari S., Phan J.H., Wang M.D. Eliminating tissue-fold artifacts in histopathological whole-slide images for improved image-based prediction of cancer grade. J. Pathol. Inform. 2013; 4: 22. https://dx.doi.org/10.4103/2153-3539.117448

Received 14.05.2025

Accepted 02.06.2025

About the Authors

Uliana N. Tumanova, Dr. Med. Sci., Leading Researcher at the 2nd Pathology Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(495)531-44-44, thanatoradiology@gmail.com,
https://orcid.org/0000-0002-0924-6555
Nikita A. Tumanov, Master’s student, MIREA – Russian Technological University, 119454, Russia, Moscow, Vernadskogo Ave., 78, toomuchick@gmail.com
Alexander I. Shchegolev, Dr. Med. Sci., Professor, Head of the 2nd Pathology Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(495)531-44-44, ashegolev@oparina4.ru,
https://orcid.org/0000-0002-2111-1530
Vladimir N. Serov, Dr. Med. Sci., Professor, Academician of RAS, President of Russian Society of Obstetricians and Gynecologists, Chief Scientific Consultant,
Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow,
Ac. Oparin str., 4, v_serov@oparina4.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.