Factors regulating placental angio/vasculogenesis in complications of pregnancy and childbirth

Khomyakova E.V., Ziganshina М.М., Baev O.R.

1) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia
The normal development and functioning of the placenta can be due to the proper regulation of the vasculogenesis and angiogenesis processes. Factors that regulate vasculogenesis and angiogenesis are the VEGF family and their receptors (VEGFR-1, VEGFR-2 and VEGFR-3). The disbalance of these factors leads to aberrant development of placental vessels which results in pathological disorders of placentation and can be associated with pregnancy complications such as preeclampsia, gestational hypertension, preterm birth, fetal growth retardation, acute fetal hypoxia. Mild placental angiogenesis disorders may not have obvious clinical manifestations, such as those that develop in preeclampsia and fetal growth retardation. However, due to the influence of trigger factors in childbirth, inadequate angiogenesis can lead to decompensation of placental circulation which is clinically manifested as acute fetal hypoxia. This review presents a brief characteristic and description of the main functions of the factors regulating angiogenesis, namely the VEGF family (VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, PlGF) and their receptors (VEGFR-1, VEGFR-2 and VEGFR-3), their role in physiological or pathological vasculo-genesis and angiogenesis of the placenta. The changes in angiogenic factors in the maternal blood in normal pregnancy/childbirth and in pathology, as well as in different methods of delivery, are presented. The effect of labor and induction of labor on changes in angiogenic factors is shown and the pathophysiological mechanisms underlying these changes are described. This review presents a modern perspective on the possibilities of predicting complications of pregnancy and childbirth based on monitoring of these factors.
Conclusion: The level of angiogenic factors in the maternal peripheral blood correlates with the morphofunctional state of the placenta. The profile of angiogenic factors is likely to reflect a particular clinical picture of placental insufficiency including a latent form that does not manifest itself during pregnancy but leads to fetal hypoxia during childbirth.

Authors’ contribution. Khomyakova E.V. – developing the design of the study, obtaining the data for analysis, reviewing the publications, processing and analyzing the material on the issue, writing the text of the manuscript; Baev O.R., Ziganshina M.M. – reviewing, editing the text.
Conflicts of interest: The authors declare no possible conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Khomyakova E.V., Ziganshina М.М., Baev O.R. Factors regulating placental angio/vasculogenesis in complications of pregnancy and childbirth.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (9): 12-21 (in Russian)
https://dx.doi.org/10.18565/aig.2023.149

Keywords

angiogenic factors
angiogenesis
vasculogenesis
placenta
preeclampsia
fetal growth retardation
fetal hypoxia

References

  1. Selvam S., Kumar T., Fruttiger M. Retinal vasculature development in health and disease. Prog. Retin. Eye Res. 2018; 63: 1-19. https://dx.doi.org/10.1016/j.preteyeres.2017.11.001.
  2. Cheng R., Ma J.X. Angiogenesis in diabetes and obesity. Rev. Endocr. Metab. Disord. 2015; 16(1): 67-75. https://dx.doi.org/10.1007/s11154-015-9310-7.
  3. Umapathy A., Chamley L.W., James J.L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis. 2020; 23(2): 105-17. https://dx.doi.org/10.1007/s10456-019-09694-w.
  4. Pereira R.D., De Long N.E., Wang RC., Yazdi F.T., Holloway A.C., Raha S. Angiogenesis in the placenta: the role of reactive oxygen species signaling. Biomed. Res. Int. 2015; 2015: 814543. https://dx.doi.org/10.1155/2015/814543.
  5. Alfaidy N., Hoffmann P., Boufettal H., Samouh N., Aboussaouira T., Benharouga M. et al. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis. Biomed. Res. Int. 2014; 2014: 451906.https://dx.doi.org/10.1155/2014/451906.
  6. Chappell L.C., Duckworth S., Seed P.T., Griffin M., Myers J., Mackillop L. et al. Diagnostic accuracy of placental growth factor in women with suspected preeclampsia: a prospective multicenter study. Circulation. 2013; 128(19): 2121-31. https://dx.doi.org/10.1161/circulationaha.113.003215.
  7. Benton S.J., McCowan L.M., Heazell A.E., Grynspan D., Hutcheon J.A., Senger C. et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction. Placenta. 2016; 42: 1-8. https://dx.doi.org/10.1016/j.placenta.2016.03.010.
  8. Цибизова В.И., Первунина Т.М., Артеменко В.А., Бицадзе В.О., Гоциридзе К.Э., Аверкин И.И., Блинов Д.В., Новикова Н.Ю. Ключевая функция плаценты в формировании врожденного порока сердца плода. Акушерство, гинекология и репродукция. 2022; 16(1): 66-72. [Tsibizova V.I., Pervunina T.M., Artemenko V.A., Bitsadze V.O., Gotsiridze K.E.,Averkin I.I., Blinov D.V., Novikova N.Yu. Placenta crucially affects formation of fetal congenital heart disease. Obstetrics, Gynecology and Reproduction. 2022; 16(1): 66-72. (in Russian)]. https://dx.doi.org/10.17749/2313-7347/ob.gyn.rep.2022.262.
  9. Laakkonen J.P., Lähteenvuo J., Jauhiainen S., Heikura T., Ylä-Herttuala S.Beyond endothelial. cells: vascular endothelial growth factors in heart, vascular anomalies and placenta. Vascul. Pharmacol. 2019; 112: 91-101.https://dx.doi.org/10.1016/j. vph.2018.10.005.
  10. Llurba E., Sanchez O., Ferrer Q., Nicolaides K.H., Ruíz A., Domínguez C. et al. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur. Heart J. 2014; 35(11): 701-7. https://dx.doi.org/10.1093/eurheartj/eht389.
  11. Brodwall K., Leirgul E., Greve G., Vollset S.E., Holmstrøm H., Tell G.S.,Øyen N. Possible common aetiology behind maternal preeclampsia and congenital heart defects in the child: a cardiovascular diseases in Norway project study. Paediatr. Perinat. Epidemiol. 2016; 30(1): 76-85.https://dx.doi.org/10.1111/ppe.12252.
  12. Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M., Mihu C., Istrate M. et al. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018; 59(2): 455-67.
  13. Miron L., Gafton B., Marinca M. Angiogeneza tumorală – implicaţii în terapia cancerelor. Jurnalul de Chirurgie, Iaşi. 2010; 6(2): 104-10.
  14. Arcondéguy T., Lacazette E., Millevoi S., Prats H., Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the posttranscriptional level. Nucleic Acids Res. 2013; 41(17): 7997-8010. https://dx.doi.org/10.1093/nar/gkt539.
  15. Iyer S., Acharya K.R. Tying the knot: the cystine signature and mo-lecular-recognition processes of the vascular endothelial growth factor family of angiogenic cytokines. FEBS J. 2011; 278(22): 4304-22.https://dx.doi.org/10.1111/j.1742-4658.2011.08350.x.
  16. Duffy A.M., Bouchier-Hayes D.J., Harmey J.H. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. In: Madame Curie Bioscience Database (formerly, Eurekah Bioscience Database). Angiogenesis. Landes Bioscience, Austin (TX), USA, 2000-2013. Available at: https://www.ncbi.nlm.nih.gov/books/NBK6482/
  17. Koch S., Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2012; 2(7): a006502.https://dx.doi.org/10.1101/cshperspect.a006502.
  18. Борзилова Ю.А., Болдырева Л.А., Шлык И.В. Васкулоэндотелиальные факторы роста (VEGF): роль и место в патологических процессах. Вестник офтальмологии. 2016; 132(4): 98-103. [Borzilova Yu.A., Boldyreva L.A., Shlyk I.V. Vascular endothelial growth factors (VEGF): role in pathological processes. Bulletin of Oftalmology. 2016; 132(4): 98-103. (in Russian)].https://dx.doi.org/10.17116/oftalma2016132498-103.
  19. Klettner A., Westhues D., Lassen J., Bartsch S., Roider J. Regulation of constitutive vascular endothelial growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor κB, and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol. Vis. 2013; 19: 281-91.
  20. Wang J.J., Zhu M., Le Y.Z. Functions of Müller cell-derived vascular endothelial growth factor in diabetic retinopathy. World J. Diabetes. 2015; 6(5): 726-33. https://dx.doi.org/10.4239/wjd.v6.i5.726.
  21. Maloney J.P., Gao L. Proinflammatory cytokines increase vascular endothelial growth factor expression in alveolar epithelial cells. Mediators Inflamm. 2015; 2015: 387842. https://dx.doi.org/10.1155/2015/387842.
  22. Zhang F., Tang Z., Hou X., Lennartsson J., Li Y., Koch A.W. et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc. Natl. Acad. Sci. USA. 2009; 106(15): 6152-7. https://dx.doi.org/110.1073/pnas.0813061106.
  23. Tammela T., Zarkada G., Nurmi H., Jakobsson L., Heinolainen K., Tvorogov D. et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing notch signalling. Nat. Cell Biol. 2011; 13(10): 1202-13.https://dx.doi.org/10.1038/ncb2331.
  24. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies genes. Genes Cancer. 2011; 2(12): 1097-105.https://dx.doi.org/10.1177/1947601911423031.
  25. Lecarpentier É., Vieillefosse S., Haddad B., Fournier T., Leguy M.C., Guibourdenche J., Tsatsaris V. Placental growth factor (PlGF) and sFlt-1 during pregnancy: physiology, assay and interest in preeclampsia. Ann. Biol. Clin. (Paris). 2016; 74(3): 259-67. https://dx.doi.org/10.1684/abc.2016.1158.
  26. Binder N.K., Evans J., Salamonsen L.A., Gardner D.K., Kaitu’u-Lino T.J., Hannan N.J. Placental growth factor is secreted by the human endometrium and has potential important functions during embryo development and implantation. PLoS One. 2016; 11(10): e0163096. https://dx.doi.org/10.1371/journal.pone.0163096.
  27. Albonici L., Benvenuto M., Focaccetti C., Cifaldi L., Miele M.T., Limana F. et al. PlGF immunological impact during pregnancy. Int. J. Mol. Sci. 2020; 21(22): 8714. https://dx.doi.org/10.3390/ijms21228714.
  28. Griffith O.W., Chavan A.R., Protopapas S., Maziarz J., Romero R.,Wagner G.P. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc. Natl. Acad. Sci. USA. 2017; 114: E6566-575.https://dx.doi.org/10.1073/pnas.1701129114.
  29. Simons M., Gordon E., Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 2016; 17(10): 611-25. https://dx.doi.org/10.1038/nrm.2016.87.
  30. Tudisco L., Orlandi A., Tarallo V., De Falco S. Hypoxia activates placental growth factor expression in lymphatic endothelial cells. Oncotarget. 2017; 8(20):32873-83. https://dx.doi.org/10.18632/oncotarget.15861.
  31. Roy S., Bag A.K., Singh R.K., Talmadge J.E., Batra S.K., Datta K. Multifaceted role of neuropilins in the immune system: potential targets for immunotherapy. Front. Immunol. 2017; 8: 1228. https://dx.doi.org/10.3389/fimmu.2017.01228.
  32. Holme A.M., Roland M.C., Henriksen T., Michelsen T.M. In vivo uteroplacental release of placental growth factor and soluble Fms-like tyrosine kinase-1 in normal and preeclamptic pregnancies. Am. J. Obstet. Gynecol. 2016;215(6): 782e1-e9. https://dx.doi.org/10.1016/j.ajog.2016.07.056.
  33. Chau K., Hennessy A., Makris A. Placental growth factor and pre-eclampsia. J. Hum. Hypertens. 2017; 31(12): 782-6. https://dx.doi.org/10.1038/jhh.2017.61.
  34. Ratsep M.T., Carmeliet P., Adams M.A., Croy B.A. Impact of placental growth factor deficiency on early mouse implant site angiogenesis. Placenta. 2014; 35(9): 772-5. https://dx.doi.org/10.1016/j.placenta.2014.07.006.
  35. Yonekura Collier A.R., Zsengeller Z., Pernicone E., Salahuddin S., Khankin E.V., Karumanchi S.A. Placental sFLT1 is associated with complement activation and syncytiotrophoblast damage in preeclampsia. Hypertens. Pregnancy. 2019; 38(3): 193-9. https://ddx.oi.org/10.1080/10641955.2019.1640725.
  36. Niu G., Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets. 2010; 11(8): 1000-17.https://dx.doi.org/10.2174/138945010791591395.
  37. Jung J.J., Tiwari A., Inamdar S.M., Thomas C.P., Goel A., Choudhury A. Secretion of soluble vascular endothelial growth factor receptor 1 (sVEGFR1/sFlt1) requires Arf1, Arf6, and Rab11 GTPases. PLoS One. 2012; 7(9): e44572. https://dx.doi.org/10.1371/journal.pone.0044572.
  38. Verlohren S., Herraiz I., Lapaire O., Schlembach D., Zeisler H., Calda P. et al. Newgestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension. 2014; 63(2): 346-52. https://dx.doi.org/10.1161/hypertensionaha.113.01787.
  39. Бурлев В.А. Инверсия ангиогенеза у беременных. Проблемы репродукции. 2013; (3): 58-66. [Burlev V.A. Angiogenesis inversion in pregnancy. Russian Journal of Human Reproduction. 2013; (3): 58-66. (in Rus-sian)].
  40. Thomas-Schoemann A., Blanchet B., Boudou-Rouquette P., Gol-mard J.L., Noé G., Chenevier-Gobeaux C. et al. Soluble VEGFR-1: a new biomarker of sorafenib-related hypertension (i.e., sorafenib-related is the compound adjective?). J. Clin. Pharmacol. 2015; 55(4): 478-9. https://dx.doi.org/10.1002/jcph.429.
  41. Фомина М.П., Дивакова Т.С., Ржеусская Л.Д. Эндотелиальная дисфункция и баланс ангиогенных факторов у беременных с плацентарными нарушениями. Медицинские новости. 2014; 3: 63-7. [Famina M.P., Divakova T.S., Rzheusskaya L.D. Endothelial dysfunction and balance of angiogenic factors in pregnant women with placental abnormalities. Medical News. 2014; (3): 63-7. (in Russian)].
  42. Sovio U., Gaccioli F., Cook E., Charnock-Jones D.S., Smith G.C.S. Slowing of fetal growth and elevated maternal serum sFLT1:PlGF are associated with early term spontaneous labor. Am. J. Obstet. Gynecol. 2021; 225(5): 520.e1-10. https://dx.doi.org/10.1016/j.ajog.2021.04.232.
  43. Dunn L., Flatley C., Kumar S. Changes in maternal placental growth factor levels during term labour. Placenta. 2018; 61: 11-6. https://dx.doi.org/10.1016/j.placenta.2017.11.003.
  44. Poon L.C.Y., Akolekar R., Lachmann R., Beta J., Nicolaides K.H. Hypertensive disorders in pregnancy: screening by biophysical and biochemical markers at 11-13 weeks. Ultrasound Obstet. Gynecol. 2010; 35(6): 662-70.https://dx.doi.org/10.1002/uog.7628.
  45. Приходько Н.Г. Роль факторов роста в инвазии трофобласта и их ассоциация с патологическим течением беременности. Бюллетень физиологии и патологии дыхания. 2019; 74: 111-8. [Prikhodko N.G. The role of growth factors in trophoblast invasion and their association witn the pathological course of pregnancy. Bulletin of Physiology and Pathology of Respiration. 2019; (74): 111-8. (in Russian)]. https://dx.doi.org/10.36604/1998-5029-2019-74-111-118.
  46. Зиганшина М.М., Кречетова Л.В., Ванько Л.В., Ходжаева З.С., Мусиенко Е.В., Сухих Г.Т. Про- и антиангиогенные факторы в патогенезе ранних потерь беременности. Часть 1. Особенности содержания про- и антиангиогенных сывороточных факторов в ранние сроки беременности. Акушерство и гинекология. 2012; 3: 14-9. [Ziganshina M.M., Krechetova L.V., Vanko L.V., Khodzhayeva Z.S., Musiyenko E.V.,Sukhikh G.T. Pro- and antiangiogenic factors in the pathogenesis of early pregnancy losses. Part 1. The specific features of pro- and antiangiogenic serum factors in early pregnancy. Obstetrics and Gynecology. 2012; (3); 14-9.(in Russian)].
  47. Курцер М.А., Сичинава Л.Г., Алажажи А.О., Нормантович Т.О., Николаева Е.В. Прогностическая значимость соотношения ангиоген-ных факторов sFlt-1/PlGF в качестве маркера преэклампсии у беременных двойней. Вопросы гинекологии, акушерства и перинатологии. 2022; 21(2): 5-12. [Kurtser M.A., Sichinava L.G., Alazhazhi A.O., Normantovich T.O., Ni-kolaeva E.V. Prognostic value of angiogenic factors (sFlt-1/PlGF ratio) as a marker for pre-eclampsia in twin pregnancy. Gynecology, Obstetrics and Peri-natology. 2022; 21(2): 5-12. (in Russian)]. https://dx.doi.org/10.20953/1726-1678-2022-2-5-12.
  48. Boeldt D.S., Bird I.M. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J. Endocrinol. 2017; 232(1): R27-44.https://dx.doi.org/10.1530/joe-16-0340.
  49. Opichka M.A., Rappelt M.W., Gutterman D.D., Grobe J.L., McIn-tosh J.J. Vascular dysfunction in preeclampsia. Cells. 2021; 10: 3055.https://dx.doi.org/10.3390/ cells10113055.
  50. Nirupama R., Divyashree S., Janhavi P., Muthukumar S.P., Ravindra P.V. Preeclampsia: pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod. 2021; 50(2): 101975. https://dx.doi.org/10.1016/j.jogoh.2020.101975.
  51. Bligh L.N., Greer R.M., Kumar S. The relationship between maternal placental growth factor levels and intrapartum fetal compromise. Placenta. 2016; 48: 63-7. https://dx.doi.org/10.1016/j.placenta.2016.10.007.
  52. Dunn L., Kumar S. Changes in intrapartum maternal placental growth factor levels in pregnancies complicated by fetal compromise at term. Placenta. 2018; 74: 9-13. https://dx.doi.org/10.1016/j.placenta.2018.12.010.
  53. Bligh L.N., Alsolai A.A., Greer R.M., Kumar S. Prelabor screening for intrapartum fetal compromise in low-risk pregnancies at term: cerebroplacental ratio and placental growth factor. Ultrasound Obstet. Gynecol. 2018; 52(6): 750-6. https://dx,doi.org/10.1002/uog.18981.
  54. Bowe S., Mitlid-Mork B., Georgieva A., Gran J.M., Redman C.W.G., Staff A.C., Sugulle M. The association between placenta-associated circulating biomarkers and composite adverse delivery outcome of a likely placental cause in healthy post-date pregnancies. Acta Obstet. Gynecol. Scand. 2021; 100(10): 1893-901. https://dx.doi.org/10.1111/aogs.14223.
  55. Zych B., Górka A., Myszka A., Błoniarz D., Siekierzyn ́ska A., Błaz W. Status of oxidative stress during low-risk labour: preliminary data. Int. J. Environ. Res. Public Health. 2023; 20(1): 157. https://dx.doi.org/10.3390/ijerph20010157.
  56. Díaz-Castro J., Florido J., Kajarabille N., Prados S., de Paco C., Ocon O.,Pulido-Moran M., Ochoa J.J. A new approach to oxidative stress and inflammatory signaling during labour in healthy mothers and neonates. Oxid. Med. Cell. Longev. 2015; 2015: 178536. https://dx.doi.org/10.1155/2015/178536.
  57. Dunn L., Flatley C., Kumar S. Changes in maternal placental growth factor levels during term labour. Placenta. 2018; 61: 11-6. https://dx.doi.org/10.1016/j.placenta.2017.11.003.
  58. Tanaka H., Tanaka K., Takakura S., Enomoto N., Maki S., Ikeda T. Placental growth factor level is correlated with intrapartum fetal heart rate findings BMC Pregnancy Childbirth. 2022; 22(1): 215. https://dx.doi.org/10.1186/s12884-022-04562-w.
  59. Mizuuchi M., Cindrova-Davies T., Olovsson M., Charnock-Jones D.S., Burton G.J., Yung H.W. Placental endoplasmic reticulum stress negatively regulates transcription of placental growth factor via ATF4 andATF6b: implications for the pathophysiology of human pregnancy complications, J. Pathol. 2016; 238(4): 550e-61. https://dx.doi.org/10.1002/path.4678.
  60. Низяева Н.В., Приходько А.М., Евграфова А.В., Тысячный О.В., Баев О.Р.Клинико-морфологические особенности плаценты при острой внутри­утробной гипоксии плода в родах. Акушерство и гинекология. 2019; 12: 96-104. [Nizyaeva N.V., Prikhodko A.M., Evgrafova A.V., Tysyachnyi O.V., Baev O.R. Clinical and morphological features of the placenta in acute intrauterine hypoxia during childbirth. Obstetrics and Gynecology. 2019; (12): 96-104. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.12.96-104.
  61. Nucci M., Poon L.C., Demirdjian G., Darbouret B., Nicolaides K.H. Maternal serum placental growth factor (PlGF) isoforms 1 and 2 at 11-13 weeks'gestation in normal and pathological pregnancies. Fetal Diagn. Ther. 2014; 36(2): 106-16. https://dx.doi.org/10.1159/000357842.
  62. Bdolah Y., Elchalal U., Natanson-Yaron S., Yechiam H., Bdolah-Abram T., Greenfield C. et al. Relationship between nulliparity and preeclampsia may be explained by altered circulating soluble fms-like tyrosine kinase 1. Hypertens. Pregnancy. 2014; 33(2): 250-9. https://dx.doi.org/10.3109/10641955.2013.858745.
  63. Goldman-Wohl D., Gamliel M., Mandelboim O., Yagel S. Learning from experience: cellular and molecular bases for improved outcome in subsequent pregnancies. Am. J. Obstet. Gynecol. 2019; 221(3): 183-93.https://dx.doi.org/10.1016/j.ajog.2019.02.037.
  64. Litwin S., Cortina M.E., Barrientos G.L., Prados M.B., Roux M.E., Miranda S.E. Multiparity increases trophoblast invasion and vascular endothelial growth factor expression at the maternal-fetal interface in mice. J. Reprod. Immunol. 2010; 85(2): 161-7. https://dx.doi.org/10.1016/j.jri.2010.03.004.
  65. Triunfo S., Parra-Saavedra M., Rodriguez-Sureda V., Crovetto F., Dominguez C.,Gratac E., Figueras F. Angiogenic factors and doppler evaluation in normally growing fetuses at routine third-trimester scan: prediction of subsequent low birth weight. Fetal Diagn. Ther. 2016; 40(1): 13-20.https://dx.doi.org/10.1159/000440650.
  66. Shah D.A., Khalil R.A. Bioactive factors in uteroplacental and systemic circulation link placental ischemia to generalized vascular dysfunction in hypertensive pregnancy and preeclampsia. Biochem. Pharmacol. 2015; 95(4): 211-26. https://dx.doi.org/10.1016/j.bcp.2015.04.012.
  67. Rasmussen L.G., Lykke J.A., Staff A.C. Angiogenic biomarkers in pregnancy: defining maternal and fetal health, Acta Obstet. Gynecol. Scand. 2015; 94(8): 820-32. https://dx.doi.org/10.1111/aogs.12629.
  68. Баев О.Р., Приходько А.М., Зиганшина М.М., Евграфова А.В., Хомякова Е.В. Антенатальные и интранатальные факторы риска, ассоциированные с гипоксией плода в родах. Акушерство и гинекология. 2022; 8: 47-53. [Baev O.R., Prikhodko A.M., Ziganshina M.M., Evgrafova A.V., Khomyakova E.V. Antenatal and intrapartum risk factors associated with fetal hypoxia in labor. Obstetrics and Gynecology. 2022; (8): 47-53. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.8.47-53.

Received 13.06.2023

Accepted 28.06.2023

About the Authors

Ekaterina V. Khomyakova, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia, +7(495)438-30-47, e_khomyakova@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Marina M. Ziganshina, PhD, Leading Researcher at the Laboratory of Clinical Immunology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-11-83, mmz@mail.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Oleg R. Baev, Dr. Med. Sci., Professor at the Maternity Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Professor at the Department of Obstetrics, Gynecology, Perinatology, and Reproductology, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, +7(495)438-11-88, o_baev@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.