Vitamin D and COVID-19 in pregnant women

Belokrinitskaya T.E., Malko D.V., Mudrov V.A., Shametova E.A.

Chita State Medical Academy, Ministry of Health of Russia, Chita, Russia

The experience of the COVID-19 pandemic has shown that pregnant women are at high risk of severe disease and mortality due to physiological changes in the body aimed at maintaining pregnancy. According to WHO experts, the risk of new epidemic outbreaks in the world remains; at the same time, the number of indications for vaccination of the population has reduced. Therefore, it is necessary to search for additional methods of anti-infective protection. It is believed that vitamin D deficiency, which often occurs during pregnancy, also leads to increased susceptibility to the SARS-CoV-2 virus.
Objective: To analyze the sources of modern literature on the effect of vitamin D on the course of COVID-19 in pregnant women.
Materials and methods: The databases and services, namely PubMed, PubMed Central, Scopus, MEDLINE, ScienceDirect, Cochrane Library, eLibrary, have been searched for publications of the Russian and foreign authors for the period from 2015 to the present.
Results: During epidemics and pandemics, it is advisable to control and/or correct the level of vitamin D in the patients in the preconception period (especially in the risk group), as this vitamin plays a significant role starting from the moment of conception to delivery. Vitamin D deficiency in mothers causes a high risk of COVID-19 infection as well as its severe course which often leads to adverse obstetric and perinatal outcomes.
Conclusion: It is reasonable to maintain optimal level of vitamin D during the whole pregnancy in order to reduce the likelihood of COVID-19 disease, the development of obstetric and infectious complications.

Authors’ contributions: Belokrinitskaya T.E. – developing the concept and design of the study; Malko D.V., Mudrov V.A., Shametova E.A. – searching and processing literature sources; Malko D.V., Shametova E.A. – writing the text; Belokrinitskaya T.E., Mudrov V.A. – editing the text.
Conflicts of interest: Authors declare lack of the possible conflicts of interests.
Funding: The study was conducted without sponsorship.
For citation: Belokrinitskaya T.E., Malko D.V., Mudrov V.A., Shametova E.A. 
Vitamin D and COVID-19 in pregnant women. 
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (12): 25-31 (in Russian)


vitamin D
pregnant women


  1. Артымук Н.В., Белокриницкая Т.Е. Клинические нормы. Акушерство и гинекология. Справочник для врачей. М.: ГЭОТАР-Медиа; 2018. 352с. [Artymuk N.V., Belokrinitskaya T.E. Clinical standards. Obstetrics and gynecology. Reference book for doctors. Moscow: GEOTAR-Media; 2018. 352p. (in Russian)].
  2. Белокриницкая Т.Е., Артымук Н.В., Филиппов О.С., Фролова Н.И. Клиническое течение, материнские и перинатальные исходы новой коронавирусной инфекции COVID-19 у беременных Сибири и Дальнего Востока. Акушерство и гинекология. 2021; 2: 48-54. [Belokrinitskaya T.E., Artymuk N.V., Filippov O.S., Frolova N.I. Clinical course, maternal and perinatal outcomes of 2019 novel coronavirus infectious disease (COVID-19) in pregnant women in Siberia and Far East. Obstetrics and Gynecology. 2021; (2): 48-54. (in Russian)].
  3. Пигарова Е.А., Плещева А.В., Дзеранова Л.К. Влияние витамина Д на иммунную систему. Иммунология. 2015; 36(1): 62-6. [Pigarova E.A., Pleshcheva A.V., Dzeranova L.K. The effect of vitamin D on the immune system. Immunology. 2015; 36(1): 62-6. (in Russian)].
  4. Мальцев С.В., Рылова Н.В. Витамин D и иммунитет. Практическая медицина. 2015; 86(1): 114-20. [Maltsev S.V., Rylova N.V. Vitamin D and immunity. Practical Medicine. 2015; 86(1): 114-20. (in Russian)].
  5. Pal R., Banerjee M., Bhadada S.K., Shetty A. J, Singh B., Vyas A. Vitamin D supplementation and clinical outcomes in COVID-19: a systematic review and meta-analysis. J. Endocrinol Invest. 2022; 45(1): 53-68.
  6. Kiely M., McCarthy E., Hennessy Á. Iron, iodine and vitamin D deficiencies during pregnancy: epidemiology, risk factors and developmental impacts. Proceedings of the Nutrition Society. 2021; 80(3): 290-302.
  7. Ланец И.Е., Гостищева Е.В. Современные взгляды на роль витамина D в организме человека. Научное обозрение. Медицинские науки. 2022; 5: 39-45. [Lanets I.E., Gostishcheva E.V. Modern views on the role of vitamin D in the human body. Nauchnoe obozrenie. Scientific review. Medical Sciences. 2022; 5: 39-45. (in Russian)].
  8. Lang P.O., Samaras D. Aging adults and seasonal influenza: does the vitamin d status (h) arm the body? J. Aging. Res. 2012; 2012: 806198.
  9. Dankers W., Colin E.M., van Hamburg J.P., Lubberts E. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front. Immunol. 2017; 7: 697.
  10. Мальцев С.В., Мансурова Г.Ш. Метаболизм витамина d и пути реализации его основных функций. Практическая медицина. 2014; 85(9): 12-8. [Maltsev S.V., Mansurova G.S. Metabolism of vitamin D and means of its main functions’ implementation. Practical Medicine. 2014; 85(9): 12-8.(in Russian)].
  11. Panagiotou G., Tee S.A., Ihsan Y., Athar W., Marchitelli G., Kelly D. et al. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID-19 are associated with greater disease severity. Clin. Endocrinol. (Oxf). 2020; 93(4): 508-11.
  12. Древаль А.В., Крюкова И.В., Барсуков И.А., Тевосян Л.Х. Внекостные эффекты витамина D. (обзор литературы). РМЖ. 2017; 1: 53-6. [Dreval A.V., Kryukova I.V., Barsukov I.A., Tevosyan L.Kh. Extraosseous effects of vitamin D. (a review) RMJ. 2017; 1: 53-6. (in Russian)].
  13. Bruce D., Ooi J.H., Yu S., Cantorna M.T. Vitamin D and host resistance to infection? Putting the cart in front of the horse. Exp. Biol. Med. (Maywood). 2010; 235(8): 921-97.
  14. Cannell J.J., Vieth R., Umhau J.C., Holick M.F., Grant W.B., Madronich S. et al. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006; 134(6): 1129-40.
  15. Gombart A.F., Borregaard N., Koeffler H.P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005; 19(9): 1067-77.
  16. Liu P.T., Stenger S., Tang D.H., Modlin R.L. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J. Immunol. 2007; 179(4): 2060-3.
  17. Boonstra A., Barrat F.J., Crain C., Heath V.L., Savelkoul H.F., O'Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol. 2001; 167(9): 4974-80.
  18. Chen S., Sims G.P., Chen X.X., Gu Y.Y., Chen S., Lipsky P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol. 2007;179(3): 1634-47.
  19. Ceolin G., Mano G.P.R., Hames N.S., Antunes L.D.C., Brietzke E., Rieger D.K. et al. Vitamin D, depressive symptoms, and Covid-19 pandemic. Front. Neurosci. 2021; 15: 670879.
  20. Lippi G., Ferrari A., Targher G. Is COVID-19 lockdown associated with vitamin D deficiency? Eur. J. Public. Health. 2021; 31(2): 278-79.
  21. Alpalhao M., Filipe P. SARS-CoV-2 pandemic and Vitamin D deficiency-A double trouble. Photodermatol. Photoimmunol. Photomed. 2020; 36(5): 412-13.
  22. Yalcin Bahat P., Aldikactioglu Talmac M., Bestel A., Topbas Selcuki N.F., Aydın Z., Polat I. Micronutrients in COVID-19 positive pregnancies. Cureus. 2020; 12(9): e10609.
  23. Szarpak L., Rafique Z., Gasecka A., Chirico F., Gawel W., Hernik J. et al. A systematic review and meta-analysis of effect of vitamin D levels on the incidence of COVID-19. Cardiol. J. 2021; 28(5): 647-54.
  24. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846-48.
  25. Ilie P.C., Stefanescu S., Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020; 32(7): 1195-98.
  26. Pereira M., Dantas Damascena A., Galvao Azevedo L.M., de Almeida Oliveira T., da Mota Santana J. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022; 62(5): 1308-16.
  27. Kazemi A., Mohammadi V., Aghababaee S.K., Golzarand M., Clark C.C.T., Babajafari S. Association of vitamin D status with SARS-CoV-2 infection or COVID-19 severity: a systematic review and meta-analysis. Adv. Nutr. 2021; 12(5): 1636-58.
  28. Liu N., Sun J., Wang X., Zhang T., Zhao M., Li H. Low vitamin D status is associated with coronavirus disease 2019 outcomes: a systematic review and meta-analysis. Int. J. Infect. Dis. 2021; 104: 58-64.
  29. Petrelli F., Luciani A., Perego G., Dognini G., Colombelli P.L., Ghidini A. Therapeutic and prognostic role of vitamin D for COVID-19 infection: a systematic review and meta-analysis of 43 observational studies. J. Steroid. Biochem. Mol. Biol. 2021; 211: 105883.
  30. Abrishami A., Dalili N., Mohammadi Torbati P., Asgari R., Arab-Ahmadi M., Behnam B. et al. Possible association of vitamin D status with lung involvement and outcome in patients with COVID-19: a retrospective study. Eur. J. Nutr. 2021; 60(4): 2249-57.
  31. Xie Y., Xu J., Zhou D., Guo M., Zhang M., Gao Y. et al. Micronutrient perspective on COVID-19: Umbrella review and reanalysis of meta-analyses. Crit. Rev. Food Sci. Nutr. 2023: 1-19.
  32. Guven M., Gultekin H. Association of 25-hydroxyvitamin D level with COVID-19-related in-hospital mortality: a retrospective cohort study. J. Am. Nutr. Assoc. 2022; 41(6): 577-86.
  33. D'Ecclesiis O., Gavioli C., Martinoli C., Raimondi S., Chiocca S., Miccolo C. et al. Vitamin D and SARS-CoV2 infection, severity and mortality: a systematic review and meta-analysis. PLoS One. 2022; 17(7): e0268396.
  34. Varikasuvu S.R., Thangappazham B., Vykunta A., Duggina P., Manne M., Raj H. et al. COVID-19 and vitamin D (Co-VIVID study): a systematic review and meta-analysis of randomized controlled trials. Expert. Rev. Anti. Infect. Ther. 2022; 20(6): 907-13.
  35. Pilz S., Zittermann A., Obeid R., Hahn A., Pludowski P., Trummer C. et al. The role of vitamin D in fertility and during pregnancy and lactation: a review of cinical data. Int. J. Environ. Res. Public. Health. 2018; 15(10): 2241.
  36. Баклейчева М.О., Ковалева И.В., Беспалова О.Н., Коган И.Ю. Влияние витамина D на репродуктивное здоровье женщины. Журнал акушерства и женских болезней. 2018; 67(3): 4-19. [Bakleicheva M.O., Kovaleva I.V., Bespalova O.N., Kogan I.Y. The effect of vitamin D on women’s reproductive health. Journal of Obstetrics and Women's Diseases. 2018; 67(3): 4-19. (in Russian)].
  37. Мальцева Л.И., Васильева Э.Н., Денисова Т.Г., Гарифуллова Ю.В. Влияние витамина D на течение и исходы беременности у женщин. Практическая медицина. 2020; 18(2): 12-20. [Maltseva L.I., Vasilyeva E.N., Denisova T.G., Garifullova Yu.V. Influence of vitamin D on the course and outcomes of pregnancy in women. Practical medicine. 2020; 18(2): 12-20. (in Russian)].
  38. Bodnar L.M., Klebanoff M.A., Gernand A.D., Platt R.W., Parks W.T., Catov J.M. et al. Maternal vitamin D status and spontaneous preterm birth by placental histology in the US Collaborative Perinatal Project. Am. J. Epidemiol. 2014; 179(2): 168-76.
  39. Li N., Wu H.M., Hang F., Zhang Y.S., Li M.J. Women with recurrent spontaneous abortion have decreased 25(OH) vitamin D and VDR at the fetal-maternal interface. Braz. J. Med. Biol. Res. 2017; 50(11): e6527.
  40. Yu L., Guo Y., Ke H.J., He Y.S., Che D., Wu J.L. Vitamin D status in pregnant women in southern china and risk of preterm birth: a large-scale retrospective Cohort Study. Med. Sci. Monit. 2019; 25: 7755-62.
  41. Lacroix M., Battista M.C., Doyon M., Houde G., Menard J., Ardilouze J.L. et al. Lower vitamin D levels at first trimester are associated with higher risk of developing gestational diabetes mellitus. Acta Diabetol. 2014; 51(4): 609-16.
  42. Gernand A.D., Simhan H.N., Baca K.M., Caritis S., Bodnar L.M. Vitamin D, pre-eclampsia, and preterm birth among pregnancies at high risk for pre-eclampsia: an analysis of data from a low-dose aspirin trial. BJOG. 2017; 124(12): 1874-82.
  43. Fogacci S., Fogacci F., Cicero A. Does vitamin d supplementation reduce the risk of pre-eclampsia? Atherosclerosis. 2019; 287: e88.
  44. Yuan Y., Tai W., Xu P., Fu Z., Wang X., Long W. et al. Association of maternal serum 25-hydroxyvitamin D concentrations with risk of preeclampsia: a nested case-control study and meta-analysis. J. Matern. Fetal Neonatal Med. 2021; 34(10): 1576-85.
  45. Goncalves D.R., Braga A., Braga J., Marinho A. Recurrent pregnancy loss and vitamin D: a review of the literature. Am. J. Reprod. Immunol. 2018; 80(5): e13022.
  46. Hou W., Yan X.T., Bai C.M., Zhang X.W., Hui L.Y., Yu X.W. Decreased serum vitamin D levels in early spontaneous pregnancy loss. Eur. J. Clin. Nutr. 2016; 70(9): 1004-08.
  47. Sinaci S., Ocal D.F., Yucel Yetiskin D.F., Uyan Hendem D., Buyuk G.N., Goncu Ayhan S. et al. Impact of vitamin D on the course of COVID-19 during pregnancy: a case control study. J. Steroid. Biochem. Mol. Biol. 2021; 213: 105964.
  48. Sedaghat M., Talebi-Ghane E., Goodarzi A., Kamkari S., Anvari R., Beheshti Rouy R. et al. Evaluation of vitamin D serum levels in pregnant women with COVID-19 compared with the control group in pregnant women: a case-control study. SN Compr. Clin. Med. 2023; 5(1): 140.
  49. Szarpak L., Feduniw S., Pruc M., Ciebiera M., Cander B., Rahnama-Hezavah M. et al. The Vitamin D serum levels in pregnant women affected by COVID-19: a systematic review and meta-analysis. Nutrients. 2023; 15(11): 2588.
  50. Vasquez-Procopio J., Torres-Torres J., Borboa-Olivares H., Sosa S.E.Y., Martínez-Portilla R.J., Solis-Paredes M. et al. Association between 25-OH vitamin D deficiency and COVID-19 severity in pregnant women. Int. J. Mol. Sci. 2022; 23(23): 15188.
  51. Manca A., Cosma S., Palermiti A., Costanzo M., Antonucci M., De Vivo E.D. et al. Pregnancy and COVID-19: the possible contribution of vitamin D. Nutrients. 2022; 14(16): 3275.
  52. Al-Kaleel A., Al-Gailani L., Demir M., Aygun H. Vitamin D may prevent COVID-19 induced pregnancy complication. Med. Hypotheses. 2021; 158: 110733.
  53. Khan S., Shafiei M.S., Longoria C., Schoggins J.W., Savani R.C., Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 2021; 10: e68563.
  54. Lin M., Gao P., Zhao T., He L., Li M., Li Y. et al. Calcitriol regulates angiotensin-converting enzyme and angiotensin converting-enzyme 2 in diabetic kidney disease. Mol. Biol. Rep. 2016; 43(5): 397-406.
  55. Xu J., Yang J., Chen J., Luo Q., Zhang Q., Zhang H. Vitamin D alleviates lipopolysaccharide‑induced acute lung injury via regulation of the renin‑angiotensin system. Mol. Med. Rep. 2017; 16(5): 7432-8.

Received 05.09.2023

Accepted 24.10.2023

About the Authors

Tatiana E. Belokrinitskaya, Dr. Med. Sci., Professor, Head of the Obstetrics and Gynecology Department of the Pediatric Faculty and Faculty of Professional Retraining, Chita State Medical Academy, Ministry of Health of Russia, +7(3022)32-30-58,,, 672000, Russia, Chita, Gorky str., 39a.
Dmitry V. Malko, Resident of the Department of Obstetrics and Gynecology of the Pediatric Faculty and Faculty of Professional Retraining, Chita State Medical Academy, Ministry of Health of Russia,,, 672000, Russia, Chita, Gorky str., 39а.
Viktor A. Mudrov, Dr. Med. Sci., Associate Professor at the Department of Obstetrics and Gynecology of the Pediatric Faculty and Faculty of Professional Retraining,
Chita State Medical Academy, Ministry of Health of Russia,,, 672000, Russia, Chita, Gorky str., 39a.
Evgeniya A. Shametova, Teaching Assistant at the Department of Obstetrics and Gynecology of the Pediatric Faculty and Faculty of Professional Retraining, Chita State Medical Academy, Ministry of Health of Russia,,, 672000, Russia, Chita, Gorky str., 39а.
Corresponding author: Tatiana E. Belokrinitskaya,

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.