Ultrasound and Doppler parameters as potential predictors of perinatal mortality in late-onset fetal growth restriction

Shcherbakova E.A., Istomina N.G., Baranov A.N., Grjibovski A.M.

1) Northern State Medical University, Ministry of Health of Russia, Arkhangelsk, Russia; 2) Northern (Arctic) Federal University, Arkhangelsk, Russia; 3) North-Eastern Federal University, Yakutsk, Russia

Objective: This study aimed to investigate the relationship between ultrasound and Doppler parameters and perinatal mortality in late-onset fetal growth restriction (FGR).
Materials and methods: This cohort study was conducted at the perinatal center of the Arkhangelsk Regional Clinical Hospital between 2018 and 2022, using non-random sampling. A total of 314 women with suspected FGR who met the inclusion criteria were included in this study. The relationship between perinatal mortality and ultrasound and Doppler parameters was assessed using multivariate Poisson regression analysis. Unadjusted and adjusted risk ratios (RR) with 95% confidence intervals (CI) were calculated. A backward stepwise elimination was used to construct the most parsimonious model.
Results: Late-onset FGR was detected in 111 cases (35.4%), of which 17 (15.3%) resulted in perinatal death. Of the 12 potential predictors included in the model, only five were selected for the final Poisson model (pseudo R2=0.44). Gestational hypertension (GH) (RR=9.3; 95% CI: 3.2–26.6), cerebroplacental ratio (CPR) (RR=10.9; 95% CI: 3.6–32.8), varicose veins of the lower extremities (VVLE) (RR=13.0; 95% CI: 3.75–45.2), and uterine artery pulsatility index (UAPI) (RR=1.2; 95% CI: 1.0–1.5) were associated with an increased risk of perinatal death, while oligohydramnios was associated with a decreased risk (RR=0.4; 95% CI: 0.2–0.9).
Conclusion: Gestational hypertension, varicose veins of the lower extremities, impaired uterine artery blood flow, and altered cerebroplacental ratio on Doppler ultrasound are associated with the risk of perinatal death in late-onset FGR, whereas oligohydramnios is associated with a decreased risk. Larger multicenter studies are needed to create valid predictive models with sufficient sensitivity and specificity for use in clinical practice.

Authors' contributions: Shcherbakova E.A. – literature review, data collection, statistical analysis, drafting of the manuscript; Istomina N.G. – data analysis, drafting of the manuscript; Baranov A.N. – conception and design of the study, final editing of the manuscript; Grjibovski A.M. – statistical analysis, interpretation of results, final editing of the manuscript. All authors confirm that their authorship meets the international ICMJE criteria (all authors contributed substantially to the conception and design of the study, conduct of the study, and drafting of the article; all authors read the article and gave final approval for submission). Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: There was no funding for this study.
Ethical Approval: The study was reviewed and approved by the Research Ethics Committee of the Northern State Medical University.
Patient Consent for Publication: All patients provided informed consent for the publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available upon request from the corresponding author after approval from the principal investigator.
For citation: Shcherbakova E.A., Istomina N.G., Baranov A.N., Grjibovski A.M. Ultrasound and Doppler
parameters as potential predictors of perinatal mortality in late-onset fetal growth restriction.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (8): 79-86 (in Russian)
https://dx.doi.org/10.18565/aig.2024.27

Keywords

Doppler ultrasound
fetal growth restriction
ultrasound examination
perinatal mortality
predictors

References

  1. Министерство здравоохранения Российской Федерации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации. М.; 2022. 76с. [Ministry of Health of the Russian Federation. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Clinical guidelines. Moscow; 2022. 76p. (in Russian)].
  2. Martins J.G., Biggio J.R., Abuhamad A. Society for Maternal-Fetal Medicine Consult Series #52: diagnosis and management of fetal growth restriction: (replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 2020; 223(4): B2-B17. https://dx.doi.org/10.1016/j.ajog.2020.05.010.
  3. Coenen H., Braun J., Köster H., Möllers M., Schmitz R., Steinhard J. et al. Role of umbilicocerebral and cerebroplacental ratios in prediction of perinatal outcome in FGR pregnancies. Arch. Gynecol. Obstet. 2022; 305(6): 1383-92. https://dx.doi.org/10.1007/s00404-021-06268-4.
  4. Schreiber V., Hurst C., da Silva Costa F., Stoke R., Turner J., Kumar S. Definitions matter: detection rates and perinatal outcome for infants classified prenatally as having late fetal growth restriction using SMFM biometric vs ISUOG/Delphi consensus criteria. Ultrasound Obstet. Gynecol. 2023; 61(3): 377-85. https://dx.doi.org/10.1002/uog.26035.
  5. Roeckner J.T., Pressman K., Odibo L., Duncan J.R., Odibo A.O. Outcome-based comparison of SMFM and ISUOG definitions of fetal growth restriction. Ultrasound Obstet. Gynecol. 2021; 57(6): 925-30. https://dx.doi.org/10.1002/uog.23638.
  6. Lewkowitz A.K., Tuuli M.G., Cahill A.G., Macones G.A., Dicke J.M. Perinatal outcomes after intrauterine growth restriction and intermittently elevated umbilical artery Doppler. Am. J. Obstet. Gynecol MFM. 2019; 1(1): 64-73. https://dx.doi.org/10.1016/j.ajogmf.2019.02.005.
  7. Ciobanu A., Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019; 53(4): 465-72. https://dx.doi.org/10.1002/uog.20157.
  8. Acharya G., Ebbing C., Karlsen H.O., Kiserud T., Rasmussen S. Sex-specific reference ranges of cerebroplacental and umbilicocerebral ratios: longitudinal study. Ultrasound Obstet. Gynecol. 2020; 56(2): 187-95. https://dx.doi.org/10.1002/uog.21870.
  9. Stampalija T., Arabin B., Wolf H., Bilardo C.M., Lees C.; TRUFFLE investigators. Is middle cerebral artery Doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am. J. Obstet. Gynecol. 2017; 216(5): 521.e1-521.e13. https://dx.doi.org/10.1016/j.ajog.2017.01.001.
  10. Министерство здравоохранения Российской Федерации. Нормальная беременность. Клинические рекомендации. М.; 2020. 80 c. [Ministry of Health of the Russian Federation. Normal pregnancy. Clinical guidelines. Moscow; 2020. 80 p. (in Russian)].
  11. Hadlock F.P., Harrist R.B., Sharman R.S., Deter R.L., Park S.K. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am. J. Obstet. Gynecol. 1985; 151(3): 333-7. https://dx.doi.org/10.1016/0002-9378(85)90298-4.
  12. Francis A., Hugh O., Gardosi J. Customized vs INTERGROWTH-21st standards for the assessment of birthweight and stillbirth risk at term. Am. J. Obstet. Gynecol. 2018; 218(2S): S692-S699. https://dx.doi.org/10.1016/j.ajog.2017.12.013.
  13. Barros A.J., Hirakata V.N. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003; 3: 21. https://dx.doi.org/10.1186/1471-2288-3-21.
  14. Mecacci F., Avagliano L., Lisi F., Clemenza S., Serena C., Vannuccini S. et al. Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? Reprod. Sci. 2021; 28(9): 2422-35. https://dx.doi.org/10.1007/s43032-020-00393-2.
  15. Redline R.W., Roberts D.J., Parast M.M., Ernst L.M., Morgan T.K., Greene M.F. et al. Placental pathology is necessary to understand common pregnancy complications and achieve an improved taxonomy of obstetrical disease. Am. J. Obstet. Gynecol. 2023; 228(2): 187-202. https://dx.doi.org/10.1016/j.ajog.2022.08.010.
  16. Li R., Lodge J., Flatley C., Kumar S. The burden of adverse obstetric and perinatal outcomes from maternal smoking in an Australian cohort. Aust. N. Z. J. Obstet. Gynaecol. 2019; 59(3): 356-61. https://dx.doi.org/10.1111/ajo.12849.
  17. Курцер М.А., Сичинава Л.Г., Шишкина Д.И., Латышкевич О.А., Бреусенко Л.Е., Спиридонов Д.С. Задержка роста плода: современные критерии диагностики, тактика ведения беременности и родов. Вопросы гинекологии, акушерства и перинатологии. 2023; 22(1): 5-11. [Kurtser M.A., Sichinava L.G., Shishkina D.I., Latyshkevich O.A., Breusenko L.E., Spiridonov D.S. Fetal growth restriction: current diagnostic criteria, management of pregnancy and labor. Gynecology, Obstetrics and Perinatology. 2023; 22(1): 5-11. (in Russian)]. https://dx.doi.org/10.20953/1726-1678-2023-1-5-11.
  18. Melamed N., Baschat A., Yinon Y., Athanasiadis A., Mecacci F., Figueras F. et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021; 152 Suppl. 1(Suppl. 1): 3-57. https://dx.doi.org/10.1002/ijgo.13522.
  19. Rizzo G., Pietrolucci M.E., Mappa I. Modeling gestational age centiles for fetal umbilicocerebral ratio by quantile regression analysis: a secondary analysis of a prospective cross-sectional study. J. Matern. Fetal Neonatal Med. 2022; 35(22): 4381-5. https://dx.doi.org/10.1080/14767058.2020.1849123.
  20. Stampalija T., Thornton J., Marlow N., Napolitano R., Bhide A., Pickles T. et al.; TRUFFLE-2 Group. Fetal cerebral Doppler changes and outcome in late preterm fetal growth restriction: prospective cohort study. Ultrasound Obstet. Gynecol. 2020; 56(2): 173-81. https://dx.doi.org/10.1002/uog.22125.
  21. Panda S., Jayalakshmi M., Shashi Kumari G., Mahalakshmi G., Srujan Y., Anusha V. Oligoamnios and perinatal outcome. J. Obstet. Gynaecol. India. 2017; 67(2): 104-8. https://dx.doi.org/10.1007/s13224-016-0938-3.
  22. Miremberg H., Grinstein E., Herman H.G., Marelly C., Barber E., Schreiber L. et al. The association between isolated oligohydramnios at term and placental pathology in correlation with pregnancy outcomes. Placenta. 2020; 90: 37-41. https://dx.doi.org/10.1016/j.placenta.2019.12.004.

Received 08.02.2024

Accepted 31.07.2024

About the Authors

Elizaveta A. Shcherbakova, PhD Student at the Department of Obstetrics and Gynecology, Northern State Medical University, Ministry of Health of Russia,
63069, Russia, Arkhangelsk, Troitsky Ave., 51, +7(911)572-20-79, Liza140395@rambler.ru, https://orcid.org/0000-0001-6297-4415
Natalya G. Istomina, PhD, Associate Professor at the Department of Obstetrics and Gynecology, Northern State Medical University, Ministry of Health of Russia,
163069, Russia, Arkhangelsk, ultrasound Troitsky Ave., 51, +7(921)477-47-84, nataly.istomina@gmail.com, https://orcid.org/0000-0001-9214-8923
Aleksei N. Baranov, Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology, Northern State Medical University, Ministry of Health of Russia,
163069, Russia, Arkhangelsk, Troitsky Ave., 51, +7(921)246-90-58, a.n.baranov2011@yandex.ru, https://orcid.org/0000-0001-6297-4415
Andrej M. Grjibovski, Doctor of Medicine, Head of the Division for Research and Innovations, Northern State Medical University, Ministry of Health of Russia,
163069, Russia, Arkhangelsk, Troitsky Ave., 51; Chief Researcher at the Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University, 163001, Russia, Arkhangelsk, Severnaya Dvina Emb., 17; Professor, North-Eastern Federal University, 677000, Russia, Republic of Sakha (Yakutia), Yakutsk, Belinsky str., 58, andrej.grjibovski@gmail.com, https://orcid.org0000-0002-5464-0498

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.