Fetal growth restriction in gestational diabetes mellitus: from pathogenesis to management tactics

Ignatko I.V., Alieva F.N., Churganova A.A., Rodionova A.M., Romanova E.M., Usman Yz Y., Anokhina V.M., Cherkashina A.V.

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia

This review presents the new scientific data on the development of placenta-associated complications, in particular fetal growth restriction (FGR), in pregnant women with gestational diabetes mellitus (GDM). GDM is associated with a large number of complications for both mother and fetus. Moreover, it increases the risk of miscarriage and preterm labor, pre-eclampsia, placental abruption, HELLP syndrome, preterm rupture of membranes and cesarean section. GDM can lead to later maternal complications such as type 2 diabetes mellitus (type 2 DM) and cardiovascular diseases. In addition to unfavorable outcomes for the mother, GDM has a negative impact on the fetus: it leads to diabetic fetopathy, congenital malformations, stillbirth, respiratory/cerebral distress syndrome of the newborn, etc. Although fetal macrosomia is a widely recognized consequence of GDM, babies with FGR are also born in GDM, and such pregnancies have a higher risk of adverse outcomes. This review presents the results of studies proving the possibility of FGR development in GDM and the characteristics of its pathophysiology, data on histologic changes in the placental tissue. The paper demonstrates the significance of lipid profile disorders in pregnant women with GDM in the pathogenesis of fetal growth abnormalities and FGR development. This study examines the characteristics of the hemostasis system in cases of FGR in women with GDM, the possibilities of prenatal diagnosis, including ultrasound, and the role of biochemical markers. The modern approach to managing pregnancy and labor in women with GDM and FGR is considered.    
Conclusion: Further study of the pathophysiologic basis of placenta-associated complications of pregnancy, including FGR in women with GDM is necessary because it will contribute to the development of new preventive, diagnostic, and therapeutic strategies.

Authors’ contributions: Ignatko I.V., Churganova A.A., Rodionova A.M. – developing the concept and design of the study, analysis of the literature data, editing the text; Alieva F.N., Romanova E.M., Usman Yz Y., Anokhina V.M., Cherkashina A.V. – search and analysis of the literature data, writing the text.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was carried out without sponsorship.
For citation: Ignatko I.V., Alieva F.N., Churganova A.A., Rodionova A.M., Romanova E.M., Usman Yz Y., 
Anokhina V.M., Cherkashina A.V. Fetal growth restriction in gestational diabetes mellitus:
from pathogenesis to management tactics.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (8): 14-23 (in Russian)
https://dx.doi.org/10.18565/aig.2024.81

Keywords

gestational diabetes mellitus
fetal growth restriction
biochemical markers
ultrasound diagnostics
perinatal outcomes

References

  1. American Diabetes Association. 14. Management of diabetes in pregnancy: Standards of medical care in diabetes-2020. Diabetes Care. 2020; 43(Suppl.1): S183-S192. https:/dx./doi.org/10.2337/dc20-S014.
  2. Plows J.F., Stanley J.L., Baker P.N., Reynolds C.M., Vickers M.H. The pathophysiology of gestational diabetes mellitus. Int. J Mol. Sci. 2018; 19(11): 3342. https:/dx.doi.org/10.3390/ijms19113342.
  3. Simpson S., Smith L., Bowe J. Placental peptides regulating islet adaptation to pregnancy: clinical potential in gestational diabetes mellitus. Curr. Opin. Pharmacol. 2018; 43: 59-65. https:/dx.doi.org/10.1016/j.coph.2018.08.004.
  4. Демидова Т.Ю., Ушанова Ф.О. Патофизиологические аспекты развития гестационного сахарного диабета. РМЖ. Медицинское обозрение. 2019; 3(10(II)): 86-91. [Demidova T.Yu., Ushanova F.O. Pathophysiological aspects of the development of gestational diabetes. RMJ. Medical Review. 2019; 3(10(II)): 86-91. (in Russian)]. https:/dx.doi.org/10.37882/2223-2966.2021.05.32.
  5. Чаплыгина Е.В., Гужвина Е.Н. Гестационный сахарный диабет как фактор риска развития неблагоприятных исходов беременности. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2021; (5): 215-9. [Chaplygina E.V., Gyzhvina E.N. Gestional diabetes mellitus as a risk factor of adverse pregnancy. Modern science: actual problems of theory and practice. Series: Natural and Technical Sciences. 2021; (5): 215-9. (in Russian)]. https:/dx.doi.org/10.37882/2223-2966.2021.05.32.
  6. Абрамова М.Е., Ходжаева З.С., Горина К.А., Муминова К.Т., Горюнов К.В., Рагозин А.К., Силачев Д.Н. Гестационный сахарный диабет: скрининг и диагностические критерии в ранние сроки беременности. Акушерство и гинекология. 2021; 5: 25-32. [Abramova M.E., Khodzhaeva Z.S., Gorina K.A., Muminova K.T., Goryunov K.V., Ragozin A.K., Silachev D.N. Gestational diabetes mellitus: screening and diagnostic criteria in early pregnancy. Obstetrics and Gynecology. 2021; (5): 25-32. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.5.25-32.
  7. Матейкович Е.А. Неблагоприятные исходы беременности и гестационный сахарный диабет: от исследования HAPO к современным данным. Акушерство и гинекология. 2021; 2: 13-20. [Mateikovich E.A. Adverse pregnancy outcomes and gestational diabetes: from the HAPO study to current data. Obstetrics and Gynecology. 2021; (2): 13-20. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.2.13-20.
  8. Chiefari E., Arcidiacono B., Foti D., Brunetti A. Gestational diabetes mellitus: an updated overview. J. Endocrinol. Invest. 2017; 40(9): 899-909. https://dx.doi.org/10.1007/S40618-016-0607-5.
  9. Mnatzaganian G., Woodward M., McIntyre H.D., Ma L., Yuen N., He F. et al. Trends in percentages of gestational diabetes mellitus attributable to overweight, obesity, and morbid obesity in regional Victoria: an eight-year population-based panel study. BMC Pregnancy Childbirth. 2022; 22(1): 95. https://dx.doi.org/10.1186/S12884-022-04420-9.
  10. Сухих Г.Т., Ход М. На пути к Европейскому консенсусу по гестационному сахарному диабету: Рациональное руководство по обследованию, лечению и уходу. Акушерство и гинекология. 2017; 4: 5-12. [Sukhikh G.T., Hod M. Towards a European Consensus on Gestational Diabetes Mellitus: A Pragmatic Guide for Diagnosis, Management, and Care. Obstetrics and Gynecology. 2017; (4): 5-12. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.4.5-12.
  11. Афонина В.А., Батрак Н.В., Малышкина А.И., Сотникова Н.Ю. Взаимосвязь липидного обмена и инсулинорезистентности при гестационном сахарном диабете. Акушерство и гинекология. 2022; 7: 13-20. [Afonina V.A., Batrak N.V., Malyshkina A.I., Sotnikova N.Yu. Relationship between lipid metabolism and insulin resistance in gestational diabetes mellitus. Obstetrics and Gynecology. 2022; (7): 13-20. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.7.13-20.
  12. Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W. et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018; 138: 271-81. https://dx.doi.org/10.1016/j.diabres.2018.02.023.
  13. IDF Diabetes Atlas 2019, 9th edition. Accessed September 11, 2023. https://d-net.idf.org/en/library/542-idf-diabetes-atlas-2019-9th-edition.html
  14. Lisowski L.A., Verheijen P.M., Copel J.A., Kleinman C.S., Wassink S., Visser G.H. et al. Congenital heart disease in pregnancies complicated by maternal diabetes mellitus. An international clinical collaboration, literature review, and meta-analysis. Herz. 2010; 35(1): 19-26. https:/dx.doi.org/10.1007/S00059-010-3244-3.
  15. Kong L., Nilsson I.A.K., Gissler M., Lavebratt C. Associations of maternal diabetes and body mass index vith offspring birth weight and prematurity. JAMA Pediatr. 2019; 173(4): 371-8. https:/dx.doi.org/10.1001/jamapediatrics.2018.5541.
  16. Akhmetova E.S., Lareva N.V., Mudrov V.A., Gergesova E.E. Features of pregnancy with gestational diabetes mellitus and prediction of diabetic fetopathy. J. Obstet. Women’s Dis. 2017; 66(4): 14-24. https:/dx.doi.org/10.17816/JOWD66414-24.
  17. Lowe W.L. Jr, Scholtens D.M., Lowe L.P., Kuang A., Nodzenski M., Talbot O. et al.; HAPO Follow-up Study Cooperative Research Group. Association of gestational diabetes with maternal disorders of glucose metabolism and childhood adiposity. JAMA. 2018; 320(10): 1005-16. https:/dx.doi.org/10.1001/jama.2018.11628.
  18. Blotsky A.L., Rahme E., Dahhou M., Nakhla M., Dasgupta K. Gestational diabetes associated with incident diabetes in childhood and youth: a retrospective cohort study. CMAJ. 2019; 191(15): E410-E417. https:/dx.doi.org/10.1503/cmaj.181001.
  19. Farrar D., Simmonds M., Bryant M., Sheldon T.A., Tuffnell D., Golder S. et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ. 2016; 354: i4694. https:/dx.doi.org/10.1136/bmj.I4694.
  20. Якубова Д.И., Игнатко И.В., Меграбян А.Д., Байбулатова Ш.Ш., Кузнецов А.С. Возможности прогнозирования и особенности течения различных фенотипических форм синдрома задержки роста плода. Вопросы гинекологии, акушерства и перинатологии. 2022; 21(6): 35-42. [Yakubova D.I., Ignatko I.V., Megrabyan A.D., Baibulatova Sh.Sh., Kuznetsov A.S. Predictability and characteristics of pregnancy course in different phenotypes of fetal growth restriction. Gynecology, Obstetrics and Perinatology. 2022; 21(6): 35-42. (in Russian)]. https:/dx.doi.org/10.20953/1726-1678-2022-6-35-42.
  21. Combs C.A., Castillo R., Webb G.W., del Rosario A. Impact of adding abdominal circumference to the definition of fetal growth restriction. Am. J. Obstet. Gynecol. MFM. 2021; 3(4): 100382. https:/dx.doi.org/10.1016/j.ajogmf.2021.100382.
  22. Royal College of Obstetricians & Gynaecologists. Small-for-gestational-age fetus and a growth restricted fetus, investigation and care (Green-top Guideline No. 31). Accessed September 11, 2023. Available at: www.rcog.org.uk/guidance/browse-all-guidance/green-top-guidelines/small-for-gestational-age-fetus-investigation-and-management-green-top-guideline-no-31/
  23. Липатов И.С., Тезиков Ю.В., Тютюнник В.Л., Кан Н.Е., Кузьмина А.И., Зуморина Э.М., Якушева А.О. Роль инсулинорезистентности в механизмах адаптации и формировании патологии послеродового и раннего неонатального периодов. Акушерство и гинекология. 2022; 2: 28-36. [Lipatov I.S., Tezikov Yu.V., Tyutyunnik V.L., Kan N.E., Kuzmina A.I., Zumorina E.M., Yakusheva A.O. Role of insulin resistance in the mechanisms of adaptation and development of disease in postpartum and early neonatal periods. Obstetrics and Gynecology. 2022; (2): 28-36. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.2.28-36.
  24. Chiefari E., Quaresima P., Visconti F., Mirabelli M., Brunetti A. Gestational diabetes and fetal overgrowth: time to rethink screening guidelines. Lancet Diabetes Endocrinol. 2020; 8(7): 561-2. https:/dx.doi.org/10.1016/S2213-8587(20)30189-3.
  25. Fasoulakis Z., Koutras A., Antsaklis P., Theodora M., Valsamaki A., Daskalakis G. et al. Intrauterine growth restriction due to gestational diabetes: from pathophysiology to diagnosis and management. Medicina (Kaunas). 2023; 59(6): 1139. https:/dx.doi.org/10.3390/medicina59061139.
  26. Scifres C.M., Parks W.T., Feghali M., Caritis S.N., Catov J.M. Placental maternal vascular malperfusion and adverse pregnancy outcomes in gestational diabetes mellitus. Placenta. 2017; 49: 10-5. https:/dx.doi.org/10.1016/j.placenta.2016.11.004
  27. Alamolhoda S.H., Yazdkhasti M., Namdari M., Zakariayi S.J., Mirabi P. Association between C-reactive protein and gestational diabetes: a prospective study. J. Obstet. Gynaecol. 2020; 40(3): 349-53. https:/dx.doi.org/10.1080/01443615.2019.1631767.
  28. Wei W., Zhang X. Expression of ADP and TNF-α in patients with gestational diabetes mellitus and its relationship with pregnancy outcomes. Exp. Ther. Med. 2020; 20(3): 2184-90. https:/dx.doi.org/10.3892/etm.2020.8952.
  29. Lainampetch J., Panprathip P., Phosat C., Chumpathat N., Prangthip P., Soonthornworasiri N. et al. Association of tumor necrosis factor alpha, interleukin 6, and C-reactive protein with the risk of developing type 2 diabetes: a retrospective cohort study of rural thais. J. Diabetes Res. 2019; 2019: 9051929. https:/dx.doi.org/10.1155/2019/9051929.
  30. Carrasco-Wong I., Moller A., Giachini F.R., Lima V.V., Toledo F., Stojanova J. et al. Placental structure in gestational diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 2020; 1866(2): 165535. https:/dx.doi.org/10.1016/j.bbadis.2019.165535.
  31. Мартюшев-Поклад А.В., Янкевич Д.С., Петрова М.В., Савицкая Н.Г. Две модели развития инсулинорезистентности и стратегия борьбы с возрастзависимыми заболеваниями: обзор литературы. Проблемы эндокринологии. 2022; 68(4): 59-68. [Martyushev-Poklad A.V., Yankevich D.S., Petrova M.V., Savitskaya N.G. Two models of insulin resistance development and the strategy to combat age-related diseases: literature review. Problems of Endocrinology. 2022; 68(4): 59-68. (in Russian)]. https://dx.doi.org/10.14341/probl13090.
  32. Morikawa M., Kato-Hirayama E., Mayama M., Saito Y., Nakagawa K., Umazume T. et al. Glycemic control and fetal growth of women with diabetes mellitus and subsequent hypertensive disorders of pregnancy. PLoS One. 2020; 15(3): e0230488. https:/dx.doi.org/10.1371/journal.pone.0230488.
  33. Tsai P.J.S., Yamauchi Y., Riel J.M., Ward M.A. Pregnancy environment, and not preconception, leads to fetal growth restriction and congenital abnormalities associated with diabetes. Sci. Rep. 2020; 10(1): 12254. https:/dx.doi.org/10.1038/S41598-020-69247-w.
  34. Fitzgerald B., Keating S. Distal villous hypoplasia, focal and diffuse. Placent. Gestation Pathol. 2018: 58-61. https:/dx.doi.org/10.1017/9781316848616.007.
  35. Kizub I.V., Klymenko K.I., Soloviev A.I. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int. J. Cardiol. 201; 174(2): 230-42. https:/dx.doi.org/10.1016/j.ijcard.2014.04.117.
  36. Dhas Y., Arshad N., Biswas N., Jones L.D., Ashili S. MicroRNA-21 silencing in diabetic nephropathy: insights on therapeutic strategies. Biomedicines. 2023; 11(9): 2583. https://dx.doi.org/10.3390/biomedicines11092583.
  37. Zhu Y., Tian F., Li H., Zhou Y., Lu J., Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 2015; 130(1): 49-53. https://dx.doi.org/10.1016/j.ijgo.2015.01.010.
  38. Yoffe L., Polsky A., Gilam A., Raff C., Mecacci F., Ognibene A. et al. Early diagnosis of gestational diabetes mellitus using circulating microRNAs. Eur. J. Endocrinol. 2019; 181(5): 565-77. https://dx.doi.org/10.1530/EJE-19-0206.
  39. Crusell M.K.W., Hansen T.H., Nielsen T., Allin K.H., Rühlemann M.C., Damm P. et al. Comparative studies of the gut microbiota in the offspring of mothers with and without gestational diabetes. Front. Cell. Infect. Microbiol. 2020; 10: 536282. https://dx.doi.org/10.3389/fcimb.2020.536282.
  40. Busik J.V., Mohr S., Grant M.B. Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes. 2008; 57(7): 1952-65. https:/dx.doi.org/10.2337/db07-1520.
  41. Starikov R., Inman K., Chen K., Lopes V., Coviello E., Pinar H. et al. Comparison of placental findings in type 1 and type 2 diabetic pregnancies. Placenta. 2014; 35(12): 1001-6. https:/dx.doi.org/10.1016/j.placenta.2014.10.008.
  42. Aldahmash W.M., Alwasel S.H., Aljerian K. Gestational diabetes mellitus induces placental vasculopathies. Environ. Sci. Pollut. Res. Int. 2022; 29(13): 19860-8. https:/dx.doi.org/10.1007/S11356-021-17267-Y.
  43. Палиева Н.В., Боташева Т.Л., Петров Ю.А., Погорелова Т.Н., Друккер Н.А., Левкович М.А., Гунько В.О. Особенности углеводного обмена и системы гемостаза при преэклампсии и синдроме задержки роста плода у беременных с гестационным сахарным диабетом. Акушерство и гинекология. 2021; 2: 69-76. [Palieva N.V., Botasheva T.L., Petrov Yu.A., Pogorelova T.N., Drukker N.A., Levkovich M.A., Gun'ko V.O. Carbohydrate metabolism and hemostatic system in women with gestational diabetes mellitus, preeclampsia, and fetal growth restriction. Obstetrics and Gynecology. 2021; (2): 69-76. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.2.69-76.
  44. Погорелова Т.Н., Гунько В.О., Никашина А.А., Палиева Н.В., Аллилуев И.А., Ларичкин А.В. Нарушение регуляции редокс-процессов в плаценте при ее дисфункции. Проблемы репродукции. 2019; 25(6): 112-8. [Pogorelova T.N., Gun'ko V.O., Nikashina A.A., Paliyeva N.V., Alliluev I.A., Larichkin A.V. Dysregulation of redox processes in the placent a during its dysfunction. Russian Journal of Human Reproduction. 2019; 25(6): 112-8. (in Russian)]. https://dx.doi.org/10.17116/repro201925061112.
  45. Линде В.А., Палиева Н.В., Боташева Т.Л., Авруцкая В.В., Дударева М.В. Роль про- и контринсулярных факторов в формировании акушерской патологии. Акушерство и гинекология. 2017; 2: 32-8. [Linde V.A., Palieva N.V., Botasheva T.L., Avrutskaya V.V., Dudareva M.V. Role of pro- and contrinsular factors in the development of obstetric pathology. Obstetrics and Gynecology. 2017; (2): 32-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.2.32-8.
  46. GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(1): 88-106. https://dx.doi.org/10.1016/S1474-4422(18)30403-4.
  47. Baschat A.A. Considering evidence in the management of fetal growth restriction. Ultrasound Obstet. Gynecol. 2021; 57(1): 25-8. https:/dx.doi.org/10.1002/uog.23557.
  48. Ходжаева З.С., Снеткова Н.В., Муминова К.Т., Горина К.А., Абрамова М.Е., Есаян Р.М. Особенности течения беременности у женщин с гестационным сахарным диабетом. Акушерство и гинекология. 2020; 7: 47-52. [Khodzhaeva Z.S., Snetkova N.V., Muminova K.T., Gorina K.A., Abramova M.E., Esayan R.M. Clinical characteristics of pregnancy in women with gestational diabetes mellitus. Obstetrics and Gynecology. 2020; (7): 47-52. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.7.47-52.
  49. Mañé L., Flores-Le Roux J.A., Gómez N., Chillarón J.J., Llauradó G., Gortazar L. et al. Association of first-trimester HbA1c levels with adverse pregnancy outcomes in different ethnic groups. Diabetes Res. Clin. Pract. 2019; 150:202-10. https:/dx.doi.org/10.1016/j.diabres.2019.03.017.
  50. Lemaitre M., Ternynck C., Bourry J., Baudoux F., Subtil D., Vambergue A. Association between HbA1c levels on adverse pregnancy outcomes during pregnancy in patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 2022; 107(3): e1117-e1125. https:/dx.doi.org/10.1210/clinem/dgab769.
  51. Dinh Le T., Minh Bui T., Hien Vu T., Phi Thi Nguyen N., Thanh Thi Tran H., Nguyen S.T. et al. Insulin resistance in gestational diabetes mellitus and its association with anthropometric fetal indices. Clin. Med. Insights Endocrinol. Diabetes. 2022; 15: 11795514221098403. https://dx.doi.org/10.1177/11795514221098403.
  52. Omere C., Richardson L., Saade G.R., Bonney E.A., Kechichian T., Menon R. Interleukin (IL)-6: a friend or foe of pregnancy and parturition? Evidence from functional studies in fetal membrane cells. Front. Physiol. 2020; 11: 891. https:/dx.doi.org/10.3389/fphys.2020.00891..
  53. Amirian A., Mahani M.B., Abdi F. Role of interleukin-6 (IL-6) in predicting gestational diabetes mellitus. Obstet. Gynecol. Sci. 2020; 63(4): 407-16. https:/dx.doi.org/10.5468/ogs.20020.
  54. Takayanagi Y., Yamanaka M., Fujihara J., Matsuoka Y., Gohto Y., Obana A. et al. Evaluation of relevance between advanced glycation end products and diabetic retinopathy stages using skin autofluorescence. Antioxidants (Basel). 2020; 9(11): 1100. https:/dx.doi.org/10.3390/antiox9111100.
  55. Jiang T., Zhang Y., Dai F., Liu C., Hu H., Zhang Q. Advanced glycation end products and diabetes and other metabolic indicators. Diabetol. Metab. Syndr. 2022; 14(1): 104. https:/dx.doi.org/10.1186/s13098-022-00873-2.
  56. Meng Q., Shao L., Luo X., Mu Y., Xu W., Gao L., Xu H., Cui Y. Expressions of VEGF-A and VEGFR-2 in placentae from GDM pregnancies. Reprod. Biol. Endocrinol. 2016; 14(1): 61. https:/dx.doi.org/10.1186/s12958-016-0191-8.
  57. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019; 42(Suppl 1): S173-S181. https:/dx.doi.org/10.2337/dc19-S015.
  58. Brown J., Grzeskowiak L., Williamson K., Downie M.R., Crowther C.A. Insulin for the treatment of women with gestational diabetes. Cochrane Database Syst. Rev. 2017; 11(11): CD012037. https:/dx.doi.org/10.1002/14651858.CD012037.pub2.
  59. Радзинский В.Е., Папышева О.В., Есипова Л.Н., Старцева Н.М., Котайш Г.А., Лукановская О.Б. Эффективность программированных родов при гестационном сахарном диабете в снижении частоты кесарева сечения. Акушерство и гинекология: новости, мнения, обучение. 2019; 7(3): 25-31. [Radzinsky V.E., Papysheva O.V., Esipova L.N., Startseva N.M., Kotaysh G.A., Lukanovskaya O.B. Effectiveness of programmed delivery in gestational diabetes mellitus in reducing the frequency of cesarean section. Obstetrics and Gynecology: News, Opinions, Training. 2019; 7(3): 25-31. (in Russian)]. https:/dx.doi.org/10.24411/2303-9698-2019-13004.
  60. Norman M., Piedvache A., Børch K., Huusom L.D., Bonamy A.E., Howell E.A. et al.; Effective Perinatal Intensive Care in Europe (EPICE) Research Group. Association of short antenatal corticosteroid administration-to-birth intervals with survival and morbidity among very preterm infants: results from the EPICE cohort. JAMA Pediatr. 2017; 171(7): 678-86. https:/dx.doi.org/10.1001/jamapediatrics.2017.0602.
  61. Groom K.M., David A.L. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am. J. Obstet. Gynecol. 2018; 218(2S): S829-S840. https:/dx.doi.org/10.1016/j.ajog.2017.11.565.

Received 08.04.2024

Accepted 30.07.2024

About the Authors

Irina V. Ignatko, Dr. Med. Sci., Corresponding Member of the Russian Academy of Sciences, Professor of the Russian Academy of Sciences, Professor, Head of the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(910)461-73-02, ignatko_i_v@staff.sechenov.ru,
https://orcid.org/0000-0002-9945-3848
Fatima N. Alieva, PhD student at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(926)389-70-62, fatima1alieva@gmail.com, https://orcid.org/0000-0002-7651-4986
Anastasia A. Churganova, PhD, Associate Professor at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(903)742-50-64, churganova_a_a@staff.sechenov.ru, https://orcid.org/0000-0001-9398-9900
Alexandra M. Rodionova, PhD, Associate Professor at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(962)920-77-96, rodionova_a_m@staff.sechenov.ru, https://orcid.org/0000-0002-9170-9597
Ekaterina M. Romanova, PhD student at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(926)315-05-57, ВР1178915@yandex.ru, https://orcid.org/0009-0005-0194-9300
Yahaya Usman Yz, PhD student at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(924)542-52-80, yzee12588@gmail.com, https://orcid.org/0009-0005-0835-8394
Valeria M. Anokhina, 6th year student at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(926)662-62-82, valeriia.anockhina@gmail.com, https://orcid.org/0000-0002-0401-3023
Anna V. Cherkashina, 5th year student at the Department of Obstetrics, Gynecology and Perinatology of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, 7(910)009-81-63, cherkashina_a_V@student.sechenov.ru, https://orcid.org/0000-0002-3840-1948
Corresponding author: Irina V. Ignatko, ignatko_i_v@staff.sechenov.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.