Ovarian malignancy risk stratification. The integration of MRI into O-­RADS

Solopova A.E., Dudina A.N., Bychenko V.G., Rubtsova N.A.

1) Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia; 2) I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, Moscow, Russia; 3) Р.A. Herzen Moscow Oncology Research Institute, Branch, National Medical Radiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
This review analyzes the current literature data on the radiodiagnosis of ovarian masses (OM), the problems of ovarian cancer screening, and modern classification methods in terms of the main characteristics and risks of OM malignancy. Ultrasound (US) is the first step in diagnostic imaging today. Many different systems have been developed to assess OM characteristics based on ultrasound indicators. One of the most promising current systems is the standardized scale to assess US results – Ovarian-Adnexal Reporting and Data System (O-RADS) that aims to improve interdisciplinary interactions between specialists and to increase diagnostic accuracy. Based on the existing O-RADS, an algorithm was presented in 2020 to assess the results and to stratify the risks of OM malignancy detected by Ovarian-Adnexal Reporting and Data System Magnetic Resonance Imaging (O-RADS MRI). This algorithm makes it possible to stratify the risk of OM malignancy, by evaluating the MRI pattern based on five formulated categories.
Conclusion. According to the conducted studies, including external validation ones, O-RADS MRI demonstrates not only the accuracy of the scoring system and high efficiency, but also ease of use, which makes it possible to recommend the O-RADS MRI scale as a routine system for assessing MR images to differentiate and stratify the risks of OM malignancy in case of the uncertain degree of the latter, as evidenced by US.


ovarian cancer
magnetic resonance imaging (MRI)
unified MRI assessment system


  1. Webb P.M., Jordan S.J. Epidemiology of epithelial ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2017; 41: 3-14. https://dx.doi.org/10.1016/j.bpobgyn.2016.08.006.
  2. Hottat N.A., Van Pachterbeke C., Vanden-Houte K., Denolin V., Jani J.C., Cannie M.M. Magnetic resonance scoring system for the assessment of ovarian and adnexal masses: added value of diffusion-weighted imaging including the apparent diffusion coefficient map. Ultrasound Obstet. Gynecol. 2020; May 21. https://dx.doi.org/10.1002/uog.22090.
  3. Brun J.L., Fritel X., Aubard Y., Borghese B., Bourdel N., Chabbert-Buffet N. et al.; Collège National des Gynécologues Obstétriciens Français. Management of presumed benign ovarian tumors: updated French guidelines. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014; 183: 52-8. https://dx.doi.org/ 10.1016/j.ejogrb.2014.10.012.
  4. Amin R.W., Ross A.M., Lee J., Guy J., Stafford B. Patterns of ovarian cancer and uterine cancer mortality and incidence in the contiguous USA. Sci. Total Environ. 2019; 697: 134128. https://dx.doi.org/10.1016/j.scitotenv.2019.134128.
  5. Zheng H., Tie Y., Wang X., Yang Y., Wei X., Zhao X. Assessment of the diagnostic value of using serum CA125 and GI-RADS system in the evaluation of adnexal masses. Medicine (Baltimore). 2019; 98(7): e14577. https://dx.doi.org/ 10.1097/MD.0000000000014577.
  6. Jill J. Screening for ovarian cancer. JAMA. 2018; 319(6): 624. https://dx.doi.org/10.1001/jama.2017.22136.
  7. Doubeni Ch.A., Doubeni A.R.B., Myers A.E. Diagnosis and management of ovarian cancer. Am. Fam. Physician. 2016; 93(11): 937-44.
  8. Budiana I.N.G., Angelina M., Pemayun T.G.A. Ovarian cancer: pathogenesis and current recommendations for prophylactic surgery. J. Turk. Ger. Gynecol. Assoc. 2019; 20(1): 47-54. https://dx.doi.org/10.4274/jtgga.galenos.2018.2018.0119.
  9. Torre L.A., Trabert B., DeSantis C.E., Miller K.D., Samimi G., Runowicz C.D. et al. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018; 68(4): 284-96. https://dx.doi.org/10.3322/caac.21456.
  10. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68(6): 394-424. https://dx.doi.org/10.3322/caac.21492.
  11. Каприн А.Д., Старинский В.В., Петрова Г.В., ред. Состояние онкологической помощи населению России в 2019 году. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2020. [Kaprin A.D., Starinskiy V.V., Petrova G.V., eds. Sostoyaniye onkologicheskoy pomoshchi naseleniyu Rossii v 2019. Мoscow: MNIOI imeni P.A. Gertsena – filial FGBU «NMITs radiologii» Minzdrava Rossii; 2020. (in Russian)].
  12. Henderson J.T., Webber E.M., Sawaya G.F. Screening for ovarian cancer: updated evidence report and systematic review for the US preventive services task force. JAMA. 2018; 319(6): 595-606. https://dx.doi.org/10.1001/jama.2017.21421.
  13. Grossman D.C., Curry S.J., Owens D.K., Barry M.J., Davidson K.W., Doubeni Ch.A. et al. Screening for ovarian cancer: US preventive services task force recommendation statement. JAMA. 2018; 319(6): 588-94. https://dx.doi.org/10.1001/jama.2017.21926.
  14. Kamal R., Hamed S., Mansour S., Mounir Y., Abdel Sallam S. Ovarian cancer screening -ultrasound; impact on ovarian cancer mortality. Br. J. Radiol. 2018; 91(1090): 20170571. https://dx.doi.org/10.1259/bjr.20170571.
  15. Matulonis U.A., Sood A.K., Fallowfield L., Howitt Br.E., Sehouli J., Karlan B.Y. Ovarian cancer. Nat. Rev. Dis. Primers. 2016; 2: 16061. https://dx.doi.org/ 10.1038/nrdp.2016.61.
  16. Dochez V., Caillon H., Vaucel E., Dimet J., Winer N., Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J. Ovarian Res. 2019; 12(1): 28. https://dx.doi.org/10.1186/s13048-019-0503-7.
  17. Sadowski E.A., Rockall A.G., Maturen K.E., Robbins J.B., Thomassin-Naggara I. Adnexal lesions: imaging strategies for ultrasound and MR imaging. Diagn. Interv. Imaging. 2019; 100(10): 635-46. https://dx.doi.org/10.1016/j.diii.2018.06.003.
  18. Meys E.M.J., Kaijser J., Kruitwagen R.F.P.M., Slangen B.F., Van Calster B., Aertgeerts B. et al. Subjective assessment versus ultrasound models to diagnose ovarian cancer: a systematic review and meta-analysis. Eur. J. Cancer. 2016; 58: 17-29. https://dx.doi.org/10.1016/j.ejca.2016.01.007.
  19. Anton C., Carvalho F.M., Oliveira E.I., Maciel G.A.R, Baracat E.C., Carvalho J.P. A comparison of CA125, HE4, risk ovarian malignancy algorithm (ROMA), and risk malignancy index (RMI) for the classification of ovarian masses. Clinics (Sao Paulo). 2012; 67(5): 437-41. https://dx.doi.org/10.6061/clinics/2012(05)06.
  20. Moszynski R., Szubert S., Szpurek D., Michalak S., Krygowska J., Sajdak S. Usefulness of the HE4 biomarker as a second-line test in the assessment of suspicious ovarian tumors. Arch. Gynecol. Obstet. 2013; 288(6): 1377-83. https://dx.doi.org/10.1007/s00404-013-2901-1.
  21. Froyman W., Landolfo C., De Cock B., Wynants L., Sladkevicius P., Testa A.C. et al. Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study. Lancet Oncol. 2019; 20(3): 448-58. https://dx.doi.org/10.1016/S1470-2045(18)30837-4.
  22. Timmerman D., Van Calster B., Testa A., Savelli L., Fischerova D., Froyman W. et al. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group. Am. J. Obstet. Gynecol. 2016; 214(4): 424-37. https://dx.doi.org/10.1016/j.ajog.2016.01.007.
  23. Timmerman D., Valentin L., Bourne T.H., Collins W.P., Verrelst H., Vergote I. et al. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet. Gynecol. 2000; 16(5): 500-5. https://dx.doi.org/10.1046/j.1469-0705.2000.00287.x.
  24. Calster B.V., Hoorde K.V., Froyman W., Kaijser J., Wynants L., Landolfo C. et al. Practical guidance for applying the ADNEX model from the IOTA group to discriminate between different subtypes of adnexal tumors. Facts Views Vis. Obgyn. 2015; 7(1): 32-41.
  25. Amor F., Vaccaro H., Alcazar J.L., Leon M., Craig J.M., Martinez J. Gynecologic imaging reporting and data system: a new proposal for classifying adnexal masses on the basis of sonographic findings. J. Ultrasound Med. 2009; 28(3): 285-91. https://dx.doi.org/ 10.7863/jum.2009.28.3.285.
  26. Amor F., Alcazar J.L., Vaccaro H., Leon M., Iturra A. GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice: a prospective multicenter study. Ultrasound Obstet. Gynecol. 2011; 38(4): 450-5. https://dx.doi.org/ 10.1002/uog.9012.
  27. Andreotti R.F., Timmerman D., Benacerraf B.R., Bennett G.L., Bourne T., Brown D.L. et al. Ovarian-adnexal reporting lexicon for ultrasound: a white paper of the ACR Ovarian Adnexal Reporting and Data System Committee. J. Am. Coll. Radiol. 2018; 15(10): 1415-29. https://dx.doi.org/10.1016/j.jacr.2018.07.004.
  28. Anthoulakis C., Nikoloudis N. Pelvic MRI as the “gold standard” in the subsequent evaluation of ultrasound-indeterminate adnexal lesions: a systematic review. Gynecol. Oncol. 2014; 132(3): 661-8. https://dx.doi.org/10.1016/j.ygyno.2013.10.022.
  29. Thomassin-Naggara I., Aubert E., Rockall A., Jalaguier-Coudray A., Rouzier R., Daraï E. et al. Adnexal masses: development and preliminary validation of an MR imaging scoring system. Radiology. 2013; 267(2): 432-43. https://dx.doi.org/ 10.1148/radiol.13121161.
  30. Pereira P.N., Sarian L.O., Yoshida A., Araújo K.G., Barros R.H.O., Baião A.C. et al. Accuracy of the ADNEX MR scoring system based on a simplified MRI protocol for the assessment of adnexal masses. Diagn. Interv. Radiol. 2018; 24(2): 63-71. https://dx.doi.org/10.5152/dir.2018.17378.
  31. Thomassin-Naggara I., Poncelet E., Jalaguier-Coudray A., Guerra A., Fournier L.S., Stojanovic S. et al. Ovarian-adnexal reporting data system magnetic resonance imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses. JAMA Netw Open. 2020; 3(1): e1919896. https://dx.doi.org/ 10.1001/jamanetworkopen.2019.19896.
  32. Kaijser J., Vandecaveye V., Deroose C.M., Rockall A., Thomassin-Naggara I., Bourne T. et al. Imaging techniques for the pre-surgical diagnosis of adnexal tumours. Best Pract. Res. Clin. Obstet. Gynaecol. 2014; 28(5): 683-95. https://dx.doi.org/ 10.1016/j.bpobgyn.2014.03.013.
  33. Andreotti R.F., Timmerman D., Strachowski L.M., Froyman W., Benacerraf B.R., Bennett G.L. et al. O-RADS US risk stratification and management system: a consensus guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. Radiology. 2019; 294(1): 168-85. https://dx.doi.org/10.1148/radiol.2019191150.
  34. Sasaguri K., Yamaguchi K., Nakazono T., Mizuguchi M., Aishima S., Yokoyama M. et al. External validation of ADNEX MR SCORING system: a single-centre retrospective study. Clin. Radiol. 2019; 74(2): 131-9. https://dx.doi.org/10.1016/j.crad.2018.10.014.
  35. Ruiz M., Labauge P., Louboutin A., Limot O., Fauconnier A., Huchon C. External validation of the MR imaging scoring system for the management of adnexal masses. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016; 205: 115-9. https://dx.doi.org/10. 1016/j.ejogrb.2016.07.493.
  36. Solopova A.E., Nosova Yu.V., Bychenko V.G. ADNEX MR scoring system in the characterization of ovarian lesions: retrospective external validation of malignancy prediction accuracy. Insights into imaging. 2020; 11 (Suppl. 1): 36.
  37. Pereira P.N., Sarian L.O., Yoshida A., Araújo K.G., Barros R.H.O., Baião A.C. et al. Accuracy of the Adnex MR scoring system based on a simplified MRI protocol for the assessment of adnexal masses. Diagn. Interv. Radiol. 2018; 24(2): 63-71. https://dx.doi.org/10.5152/dir.2018.17378.

Received 28.08.2020

Accepted 08.09.2020

About the Authors

Alina E. Solopova, MD, PhD, Associate Professor, Leading Researcher, Department of Radiology, Academician V.I. Kulakov National Medical Research
Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia. E-mail: a_solopova@oparina4.ru. ORCID: 0000-0003-4768-115X;
Scopus Author ID: 24460923200; Researcher ID: P-8659-2015. 117997, Russia, Moscow, Academician Oparin str., 4.
Anastasiya N. Dudina – 6th year student, Institute of Children’s Health, Sechenov University, Moscow, Russia. ORCID: 0000-0003-3778-4067;
Scopus Author ID: 57213149111. E-mail: dudina97@mail.ru. 119991, Russia, Moscow, Trubetskaya str., 8-2.
Vladimir G. Bychenko - MD, PhD, Head of the Department of Radiology, Academician V.I. Kulakov National Medical Research Center for Obstetrics,
Gynecology and Perinatology, Moscow, Russia. E-mail:v_bychenko@oparina4.ru. 117997, Russia, Moscow, Academician Oparin str., 4.
Natalia A. Rubtsova, MD, PhD, Professor, Head of the Department of Radiology, P.A. Hertsen Moscow Oncological Center. E-mail: rna17@yandex.ru.
125284, Russia, Moscow, 2nd Botkinsky pr., 3.

For citation: Solopova A.E., Dudina A.N., Bychenko V.G., Rubtsova N.A. Ovarian malignancy risk stratification. The integration of MRI into O-RADS.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 9: 28-37 (in Russian).

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.