The role of peripheral blood platelet-monocyte aggregates in reproductive processes and their study methods

Selyutin A.V., Chepanov S.V., Pavlov O.V., Kornyushina E.A., Selkov S.A.

D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology, Saint Petersburg, Russian Federation
This review analyzes and generalizes the results of the studies characterizing the interaction of peripheral blood platelets and monocytes, which have been conducted to define their role in various physiological and pathophysiological processes. At the same time, special attention was given to reproductively significant processes. Due to the fact that the magnitude, direction, and consequences of the interactions between these types of cells are most strongly characterized by the number, immunomorphological features, and functional activity of platelet-monocyte aggregates (PMAs) resulting from such interactions; particular emphasis was placed on the findings of the investigation of these structural formations. In particular, the review considers the results of studying the mechanisms of interaction between platelets and monocytes, which lead not only to the formation, but also to the stabilization of these structures. It describes the membrane-bound molecules and molecular complexes that provide the formation of PMAs, as well as soluble factors that favor the development of complexation mechanisms at the autocrine, juxtacrine, and paracrine regulation levels. The review contains the characteristics of methods for the isolation and identification of PMAs, such as differential and gradient centrifugation, immunomagnetic separation, electron microscopy, light and fluorescence microscopy, flow cytometry and the latter with visualization. Their advantages and disadvantages are analyzed from the point of view of adequacy, technological effectiveness, and clinical and diagnostic information value of the conducted studies. The data available in the literature on the role of PMAs in reproductive pathologies are assessed.
Conclusion. The contact interaction of platelets and monocytes plays an important role in various physiological and pathophysiological processes. The ability to effectively isolate and identify PMAs using modern technologies has created prerequisites for the use of measuring the concentration of PMAs as a diagnostic and prognostic indicator for diseases accompanied by hemostatic disorders. From the point of view of reproductive processes, the study of the effect of PMAs on endometrial and trophoblast cells is of absolute interest. An approach based on the creation of cell models using cell lines of the corresponding origin seems promising.

Keywords

platelet
monocyte
trophoblast
placenta
platelet-monocyte aggregate
P-selectin
flow cytometry

References

  1. Kral J.B., Schrottmaier W.C., Salzmann M., Assinger A. Platelet interaction with innate immune cells. Transfus. Med. Hemother. 2016; 43(2): 78-88. https://dx.doi.org/10.1159/000444807.
  2. Bizzozero G. Über einen neuen Forrnbestandteil des Blutes und dessen Rolle bei der Thrombose und Blutgerinnung. Arch. Pathol. Anat. Physiol. Klin. Med. 1882; 90: 261-332.
  3. Милованов А.П. Цитотрофобластическая инвазия – важнейший механизм плацентации и прогрессии беременности. Архив патологии. 2019; 81(4): 5-10. [Milovanov A.P. Cytotrophoblastic invasion is the most important mechanism of placentation and pregnancy progression. Arkhiv patologii/ Archive of Pathology. 2019; 81(4): 5-10. (in Russian)]. https://dx.doi.org/10.17116/patol2019810415.
  4. Roberts V.H.J., Morgan T.K., Bednarek P., Morita M., Burton G.J., Lo J.O., Frias A.E. Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum. Reprod. 2017; 32(12): 2382-93. https://dx.doi.org/10.1093/humrep/dex301.
  5. Moser G., Guettler J., Forstner D., Gauster M. Maternal platelets – Ffiend or foe of the human placenta. Int. J. Mol. Sci. 2019; 20(22): 5639. https://dx.doi.org/10.3390/ijms20225639.
  6. Bos-Mikich A., Ferreira M.O., de Oliveira R., Frantz N. Platelet-rich plasma or blood-derived products to improve endometrial receptivity? J. Assist. Reprod. Genet. 2019; 36(4): 613-20. https://dx.doi.org/10.1007/s10815-018-1386-z.
  7. Sato Y., Fujiwara H., Konishi I. Mechanism of maternal vascular remodeling during human pregnancy. Reprod. Med. Biol. 2012; 11(1): 27-36. https://dx.doi.org/10.1007/s12522-011-0102-9.
  8. Kohli S., Ranjan S., Hoffmann J., Kashif M., Daniel E.A., Al-Dabet M.M. et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood. 2016; 128(17): 2153-64. https://dx.doi.org/10.1182/blood-2016-03-705434.
  9. Kohli S., Isermann B. Placental hemostasis and sterile inflammation: new insights into gestational vascular disease. Thromb. Res. 2017; 151(Suppl. 1): S30-3. https://dx.doi.org/10.1016/S0049-3848(17)30063-4.
  10. Rayes J., Bourne J.H., Brill A., Watson S.P. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res. Pract. Thromb. Haemost. 2019; 4(1): 23‐35. https://dx.doi.org/10.1002/rth2.12266.
  11. Martínez-Sánchez S.M., Minguela A., Prieto-Merino D., Zafrilla-Rentero M.P., Abellán-Alemán J., Montoro-García S. The effect of regular intake of dry-cured ham rich in bioactive peptides on inflammation, platelet and monocyte activation markers in humans. Nutrients. 2017; 9(4): 321. https://dxdoi.org/10.3390/nu9040321.
  12. Lebas H., Yahiaoui K., Martos R., Boulaftali Y. Platelets are at the nexus of vascular diseases. Front. Cardiovasc. Med. 2019; 6: 132. https://dx.doi.org/10.3389/fcvm.2019.00132.
  13. Kamińska J., Lisowska A., Koper-Lenkiewicz O.M., Mikłasz P., Grubczak K., Moniuszko M. et al. Differences in monocyte subsets and monocyte-platelet aggregates in acute myocardial infarction-preliminary results. Am. J. Med. Sci. 2019; 357(5): 421-34. https://dx.doi.org/10.1016/j.amjms.2019.02.010.
  14. Gianazza E., Brioschi M., Baetta R., Mallia A., Banfi C., Tremoli E. Platelets in healthy and disease states: from biomarkers discovery to drug targets identification by proteomics. Int. J. Mol. Sci. 2020; 21(12): 4541. https://dx.doi.org/10.3390/ijms21124541.
  15. Santilli F., Simeone P., Liani R. The role of platelets in diabetes mellitus. In: Michelson A., Cattaneo M., Frelinger A., Newman P., eds. Platelets. 4th ed. Academic Press; 2019: 469-503. https://dx.doi.org/10.1016/B978-0-12-813456-6.00027-8.
  16. Dixon D.A., Tolley N.D., Bemis-Standoli K., Martinez M.L., Weyrich A.S., Morrow J.D. et al. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J. Clin. Invest. 2006; 116(10): 2727-38. https://dx.doi.org/10.1172/JCI27209.
  17. Luppi P., Deloia J.A. Monocytes of preeclamptic women spontaneously synthesize proinflammatory cytokines. Clin. Immunol. 2006; 118(2-3): 268-75. https://dx.doi.org/10.1016/j.clim.2005.11.001.
  18. Macey M.G., Bevan S., Alam S., Verghese L., Agrawal S., Beski S. et al. Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb. Res. 2010; 125(3): e76-81. https://dx.doi.org/10.1016/j.thromres.2009.09.013.
  19. Major H.D., Campbell R.A., Silver R.M., Branch D.W., Weyrich A.S. Synthesis of sFlt-1 by platelet-monocyte aggregates contributes to the pathogenesis of preeclampsia. Am. J. Obstet. Gynecol. 2014; 210(6): 547. e1-7. https://dx.doi.org/10.1016/j.ajog.2014.01.024.
  20. Xu X.R., Zhang D., Oswald B.E., Carrim N., Wang X., Hou Y. et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016; 53(6): 409-30. https://dx.doi.org/10.1080/10408363.2016.1200008.
  21. Schultze M. Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch. Mikr. Anat. 1865; 1: 1-42.
  22. Gyulkhandanyan A.V., Mutlu A., Freedman J., Leytin V. Selective triggering of platelet apoptosis, platelet activation or both. Br. J. Haematol. 2013; 161(2): 245-54. https://dx.doi.org/10.1111/bjh.12237.
  23. Cimmino G., Golino P. Platelet biology and receptor pathways. J. Cardiovasc. Transl. Res. 2013; 6(3): 299-309. https://dx.doi.org/10.1007/s12265-012-9445-9.
  24. Herter J.M., Rossaint J., Zarbock A. Platelets in inflammation and immunity. J. Thromb. Haemost. 2014; 12(11): 1764-75. https://dx.doi.org/10.1111/jth.12730.
  25. Ambrosio A.L., Di Pietro S.M. Mechanism of platelet α-granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Adv. 2019; 3(17): 2617-26. https://dx.doi.org/10.1182/bloodadvances.2018028969.
  26. Sharda A., Flaumenhaft R. The life cycle of platelet granules. F1000Research. 2018; 7: 236. https://dx.doi.org/10.12688/f1000research.13283.1.
  27. McGivern T.J., Molloy K., Bahar M., McElvaney N.G., Moran N., Kerrigan S.W. A platelet dense-granule secretion defect may lead to a muted inflammatory cell mobilization response in cystic fibrosis patients. J. Thromb. Haemost. 2013; 11(10): 1939-42. https://dx.doi.org/10.1111/jth.12377.
  28. Maurer S., Kopp H.G., Salih H.R., Kropp K.N. Modulation of immune responses by platelet-derived ADAM10. Front. Immunol. 2020; 11: 44. https://dx.doi.org/10.3389/fimmu.2020.00044.
  29. van Furth R., Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968; 128: 415-35.
  30. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N. et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116(16): e74-80. https://dx.doi.org/10.1182/blood-2010-02-258558.
  31. Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020; 92(1): e12883. https://dx.doi.org/10.1111/sji.12883.
  32. Patel A.A., Zhang Y., Fullerton J.N., Boelen L., Rongvaux A., Maini A.A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017; 214(7): 1913-23. https://dx.doi.org/10.1084/jem.20170355.
  33. Burkhart J.M., Gambaryan S., Watson S.P., Jurk K., Walter U., Sickmann A. et al. What can proteomics tell us about platelets? Circ. Res. 2014; 114(7): 1204-19. https://dx.doi.org/10.1161/CIRCRESAHA.114.301598.
  34. Finsterbusch M., Schrottmaier W.C., Kral-Pointner J.B., Salzmann M., Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018; 29(7): 677-85. https://dx.doi.org/10.1080/09537104.2018.1430358.
  35. Lausen M., Poulsen T.B.G., Christiansen G., Kastaniegaard K., Stensballe A., Birkelund S. Proteomic analysis of lipopolysaccharide activated human monocytes. Mol. Immunol. 2018; 103: 257-69. https://dx.doi.org/10.1016/j.molimm.2018.09.016.
  36. van Gils J.M., Zwaginga J.J., Hordijk P.L. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J. Leukoc. Biol. 2009; 85(2): 195-204. https://dx.doi.org/10.1189/jlb.0708400.
  37. Dopheide J.F., Rubrech J., Trumpp A., Geissler P., Zeller G.C., Bock K. et al. Leukocyte-platelet aggregates – a phenotypic characterization of different stages of peripheral arterial disease. Platelets. 2016; 27(7): 658-67. https://dx.doi.org/10.3109/09537104.2016.1153619.
  38. Dziedzic A., Miller E., Bijak M., Przyslo L., Saluk-Bijak J. Increased pro-thrombotic platelet activity associated with thrombin/PAR1-dependent pathway disorder in patients with secondary progressive multiple sclerosis. Int. J. Mol. Sci. 2020; 21(20): 7722. https://dx.doi.org/10.3390/ijms21207722.
  39. Trotta A., Velásquez L.N., Milillo M.A., Delpino M.V., Rodríguez A.M., Landoni V.I. et al. Platelets promote Brucella abortus monocyte invasion by establishing complexes with monocytes. Front. Immunol. 2018; 9: 1000. https://dx.doi.org/10.3389/fimmu.2018.0100041.
  40. Gerrits A.J., Frelinger A.L., Michelson A.D. Whole blood analysis of leukocyte-platelet aggregates. Curr. Protoc. Cytom. 2016; 78: 6.15.1-6.15.10. https://dx.doi.org/10.1002/cpcy.8.
  41. Granja T., Schad J., Schüssel P., Fischer C., Häberle H., Rosenberger P. et al. Using six-colour flow cytometry to analyse the activation and interaction of platelets and leukocytes–a new assay suitable for bench and bedside conditions. Thromb. Res. 2015; 136(4): 786-96. https://dx.doi.org/10.1016/j.thromres.2015.07.009.
  42. Thomas G.D., Hamers A.A.J., Nakao C., Marcovecchio P., Taylor A.M., McSkimming C. et al. Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. Arterioscler. Thromb. Vasc. Biol. 2017; 37(8): 1548‐58. https://dx.doi.org/10.1161/ATVBAHA.117.309145.
  43. Lau A.K.S., Shum H.C., Wong K.K.Y., Tsia K. Optofluidic time-stretch imaging – an emerging tool for high-throughput imaging flow cytometry. Lab. Chip. 2016; 16(10): 1743-56. https://dx.doi.org/10.1039/c5lc01458a.
  44. Jung B.K., Cho C.H., Moon K.C., Hur D.S., Yoon J.-A., Yoon S.-Y. Detection of platelet-monocyte aggregates by the ADAM® image cytometer. Int. J. Med. Sci. 2014; 11(12): 1228‐33. https://dx.doi.org/10.7150/ijms.10008.
  45. Hui H.Y., Fuller K., Erber W., Linden M.D. Measurement of monocyte-platelet aggregates by imaging flow cytometry. Cytometry Part A. 2015; 87(3): 273‐8. https://dx.doi.org/10.1002/cyto.a.22587.
  46. Feng C., Chen Q., Fan M., Guo J., Liu Y., Ji T., Zhu J., Zhao X. Platelet-derived microparticles promote phagocytosis of oxidized low-density lipoprotein by macrophages, potentially enhancing foam cell formation. Ann. Transl. Med. 2019; 7(18): 477. https://dx.doi.org/10.21037/atm.2019.08.06.

Received 05.02.2021

Accepted 27.04.2021

About the Authors

Alexander V. Selutin, Ph.D. (biol. sci.), Senior Researcher at the Immunology Laboratory with AIDS Diagnostics Group, Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute for Obstetrics and Gynecology. Tel.: +7(812)328-98-50. Email: a_selutin@yahoo.com.
3 Mendeleyevskaya Line, Saint Petersburg, 199034, Russian Federation.
Sergey V. Chepanov, Ph.D., Senior Researcher at the Proteomic Immunoregulation Group, Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute for Obstetrics and Gynecology. Tel.: +7(812)328-98-50. E-mail: chepanovsv@gmail.com. 3 Mendeleyevskaya Line, Saint Petersburg, 199034, Russian Federation.
Oleg V. Pavlov, PhD, MD (biol. sci.), Leading Researcher at the Department of Immunology and Intercellular Interactions, Institute of Obstetrics, D.O. Ott Research Institute for Obstetrics and Gynecology. Tel.: +7(812) 328-98-50. E-mail: ovpavlov@hotmail.com. 3 Mendeleyevskaya Line, Saint Petersburg, 199034, Russian Federation.
Ekaterina A. Kornyushina, obstetrician-gynecologist at the Obstetric Department of Pathology of Pregnancy, Senior Researcher, D.O. Ott Research Institute for Obstetrics and Gynecology. E-mail: hapacheva@yandex.ru. 3 Mendeleyevskaya Line, Saint Petersburg, 199034, Russian Federation.
Sergey A. Selkov, Merited Scholar of the Russian Federation, Dr. Med. Sci., Professor, Head of the Department of Immunology and Intercellular Interactions, D.O. Ott Institute of Obstetrics, Gynecology and Reproductology. Tel.: +7(812)328-98-50. E-mail: selkovsa@mail.ru. 3 Mendeleyevskaya Line, Saint Petersburg, 199034, Russian Federation.

For citation: Selyutin A.V., Chepanov S.V., Pavlov O.V., Kornyushina E.A., Selkov S.A. The role of peripheral blood platelet-monocyte aggregates in reproductive processes and their study methods.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 8: 50-58 (in Russian)
https://dx.doi.org/10.18565/aig.2021.8.50-58

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.