Role of transforming growth factor-β in the formation of fetal growth restriction

Khachatryan Z.V., Kan N.E., Vtorushina V.V., Krechetova L.V., Kharchenko D.K., Mantrova D.A., Tyutyunnik V.L.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow
Objective. To study the diagnostic significance of transforming growth factor (TGF)-β1, TGF-β2, and TGF-β3 isoforms in fetal growth restriction (FGR).
Subjects and methods. Plasma samples from 48 women were examined during this investigation. The pregnant women were divided into 2 groups: 1) 28 pregnant women with FGR; 2) 20 women with physiological pregnancy. All the patients underwent multiplex measurement of the concentrations of TGF-β1, TGF-β2, and TGF-β3 isoforms by using the standard 3-plex Bio-Plex Pro assay system on a Bio-Plex 200 System flow-through laser immunoassay device (Bio-Rad, USA), followed by the processing of the results obtained in the Bio-Plex Manager Software version 6.0 Properties (Bio-Rad, USA).
Results. The level of TGF-β3 was ascertained to ne significantly lower in pregnant women with FGR (41.42 pg/ml)
than in apparently healthy pregnant women (48.42pg/ml) (p = 0.01). The levels of TGF-β1 and TGF-β2 did not statistically differ in the study groups.
Conclusion. The findings indicate that studying the plasma levels of TGF-β3 is promising in predicting fetal growth restriction.

Keywords

fetal growth restriction
transforming growth factor-β
placental insufficiency

References

  1. Lee A.C., Kozuki N., Cousens S., Stevens G.A., Blencowe H., Silveira M.F. et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: analysis of CHERG datasets. BMJ. 2017; 358: j3677. https://doi.org/10.1136/bmj.j3677.
  2. Alfirevic Z., Stampalija T., Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst. Rev. 2017; 6(6): CD007529. https://doi.org/10.1002/14651858.
  3. Devaskar S.U., Chu A. Intrauterine growth restriction: hungry for an answer. Physiology (Bethesda). 2016; 31(2): 131-46. https://.doi.org/10.1152/physiol.00033.2015.
  4. Burton G.J., Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018; 218(2, Suppl.): S745-61. https://doi.org/10.1016/j.ajog.2017.11.577.
  5. Стрижаков А.Н., Мирющенко М.М., Игнатко И.В., Попова Н.Г., Флорова В.С., Кузнецов А.С. Прогнозирование синдрома задержки роста плода у беременных высокого риска. Акушерство и гинекология. 2017; 7: 34-44. [Strizhakov A.N., Miryushchenko M.M., Ignatko I.V., Popova N.G., Florova V.S., Kuznetsov A.S. Prediction of fetal growth restriction in high-risk pregnant women. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (7): 34-44. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.7.34-44
  6. Вишнякова П.А., Суханова Ю.А., Микаелян А.Г., Булатова Ю.С., Пятаева С.В., Балашов И.С., Боровиков П.И., Тетруашвили Н.К., Высоких М.Ю. Синдром задержки роста плода и маркеры митохондриальной дисфункции. Акушерство и гинекология. 2018; 6: 31-6. [Vishnyakova P.A., Sukhanova Yu.A., Mikaelyan A.G., Bulatova Yu.S., Pyataeva S.V., Balashov I.S., Borovikov P.I., Tetruashvili N.K., Vyssokikh M.Yu. Fetal growth restriction and markers for mitochondrial dysfunction. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; (6): 31-6. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.6.31-36
  7. Amarilyo G., Oren A., Mimouni F.B., Ochshorn Y., Deutsch V., Mandel D. Increased cord serum inflammatory markers in small-for-gestational-age neonates. J. Perinatol. 2011; 31(1): 30-2. https://doi.org/10.1038/jp.2010.53.
  8. Robb K.P., Cotechini T., Allaire C., Sperou A., Graham C.H. Inflammation-induced fetal growth restriction in rats is associated with increased placental HIF-1α accumulation. PLoS One. 2017; 12(4): e0175805. https://doi.org/10.1371/journal.pone.0175805.
  9. Lausten-Thomsen U., Olsen M., Greisen G., Schmiegelow K. Inflammatory markers in umbilical cord blood from small-for-gestational-age newborns. Fetal Pediatr. Pathol. 2014; 33(2): 114-8. https://doi.org/10.3109/15513815.2013.879239.
  10. Al-Azemi M., Raghupathy R., Azizieh F. Pro-inflammatory and anti-inflammatory cytokine profiles in fetal growth restriction. Clin. Exp. Obstet. Gynecol. 2017; 44(1): 98-103. https://doi.org/10.12891/ceog3295.2017.
  11. Caniggia I., Mostachfi H., Winter J., Gassmann M., Lye S.J., Kuliszewski M. et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J. Clin. Invest. 2000; 105(5): 577-87. https://doi.org/10.1172/JCI8316.
  12. Lash G.E., Otun H.A., Innes B.A., Bulmer J.N., Searle R.F., Robson S.C. Inhibition of trophoblast cell invasion by TGFB1, 2, and 3 is associated with a decrease in active proteases. Biol. Reprod. 2005; 73(2): 374-81. https://doi.org/10.1095/biolreprod.105.040337.
  13. Moser G., Huppertz B. Implantation and extravillous trophoblast invasion: From rare archival specimens to modern biobanking. Placenta. 2017; 56: 19-26. https://doi.org/10.1016/j.placenta.2017.02.007.
  14. Huang Z., Li S., Fan W., Ma Q. Transforming growth factor β1 promotes invasion of human JEG-3 trophoblast cells via TGF-β/Smad3 signaling pathway. Oncotarget. 2017; 8(20): 33560-70. https://doi.org/10.18632/oncotarget.16826.
  15. Choi J.H., Lee H.J., Yang T.H., Kim G.J. Effects of hypoxia inducible factors-1α on autophagy and invasion of trophoblasts. Clin. Exp. Reprod. Med. 2012; 39(2): 73-80. https://doi.org/10.5653/cerm.2012.39.2.73.
  16. Fenton T.R., Kim J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013; 13: 59. https://doi.org/10.1186/1471-2431-13-59.
  17. Cift T., Uludag S., Aydin Y., Benian A. Effects of amniotic and maternal CD-146, TGF-β1, IL-12, IL-18 and IFN-γ, on adverse pregnancy outcome. J. Matern. Fetal Neonatal Med. 2013; 26(1): 21-5. https://doi.org/10.3109/14767058.2012.722712.
  18. Rab A., Szentpéterib I., Kornyac L., Börzsönyid B., Demendid C., Valent S. et al. Placental gene expression of transforming growth factor beta 1 (TGF-β1) in small for gestational age newborns. J. Matern. Fetal Neonatal Med. 2015; 28(14): 1701-5. https://doi.org/10.3109/14767058.2014.966673.
  19. Genbacev O., Zhou Y., Ludlow J.W., Fisher S.J. Regulation of human placental development by oxygen tension. Science. 1997; 277(5332): 1669-72. https://doi.org/10.1126/science.277.5332.1669.
  20. Caniggia I., Grisaru-Gravnosky S., Kuliszewsky M., Post M., Lye S.J. Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J. Clin. Invest. 1999; 103(12): 1641-50. https://doi.org/10.1172/JCI6380.
  21. Munaut C., Lorquest S., Pequex C., Blacher S., Berndt S., Frankenne F. et al. Hypoxia is responsible for soluble vascular endothelial growth factor receptor –1 but not for soluble endoglin induction in villous trophoblast. Hum. Reprod. 2008; 23(6): 1407-15. https://doi.org/10.1093/humrep/den114.
  22. Scheid A., Wenger R.H., Schäffer L., Camenisch I., Distler O., Ferenc A. et al. Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-β3. FASEB J. 2002; 16(3): 411-3. https://doi.org/10.1096/fj.01-0496fje.
  23. Schäffer L., Scheid A., Spielmann P., Breymann C., Zimmermann R., Meuli M. et al. Oxygen-regulated expression of TGF-β3, a growth factor involved in trophoblast differentiation. Placenta. 2003; 24(10): 941-50. https://doi.org/10.1016/s0143-4004(03)00166-8.
  24. Nishi H., Nakada T., Hokamura M., Osakabe Y., Itokazu O., Huang L.E. et al. Hypoxia-inducible factor-1 transactivates transforming growth factor-β3 in trophoblast. Endocrinology. 2004; 145(9): 4113-8. https://doi.org/10.1210/en.2003-1639.
  25. Yinon Y., Nevo O., Xu J., Many A., Rolfo A., Todros T. et al. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation via transforming growth factor-beta 3. Am. J. Pathol. 2008; 172(1): 77-85. https://doi.org/10.2353/ajpath.2008.070640.
  26. Ходжаева З.С., Акатьева А.С., Холин А.М., Сафонова А.Д., Вавина О.В., Муминова К.Т. Молекулярные детерминанты развития ранней и поздней преэклампсии. Акушерство и гинекология. 2014; 6: 14-9. [Khodzhaeva Z.S., Akatyeva A.S., Kholin A.M., Safonova A.D., Vavina O.V., Muminova K.T. Molecular determinants of the development of early and late preeclampsia. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2014; 6: 14-19. (in Russian)].

Received 20.05.2019

Accepted 21.06.2019

About the Authors

Zarine V Khachatryan., postgraduate student of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(909)656-24-56. E-mail: z.v.khachatryan@gmail.com
117997 Russia, Moscow, Ac. Oparina, 4 str.
Natalia E. Kan, PhD, MD, professor of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov
Ministry of Health of Russia. Tel.: +7(926)220-86-55. E-mail: kan-med@mail.ru. Number Researcher ID B-2370-2015. ORCID ID 0000-0001-5087-5946
117997 Russia, Moscow, Ac. Oparina, 4 str.
Valentina V. Vtorushina, PhD, doctor of the highest category of the Clinical Immunology of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Health of Russia. Tel.:+7(916)980-78-95. E-mail: vtorushina@inbox.ru
117997 Russia, Moscow, Ac. Oparina, 4 str.
Lyubov V Krechetova., MD, Head of the Clinical Immunology Laboratory of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named
after Academician V.I. Kulakov Ministry of Health of Russia (117997, Moscow, Ac. Oparina, 4 str.). Tel.: +7(916)647-39-29. E-mail: l_krechetova@oparina4.ru .
ID Y-4837-208
117997 Russia, Moscow, Ac. Oparina, 4 str.
Daria K. Kharchenko, postgraduate student of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(915)165-87-00. E-mail: drkharchenko@mail.ru
117997 Russia, Moscow, Ac. Oparina, 4 str.
Diana A Mantrova., postgraduate student of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(909)636-72-59. E-mail: d-mantrova@yandex.ru
117997 Russia, Moscow, Ac. Oparina, 4 str.
Victor L. Tyutyunnik, PhD, MD, Head of the obstetric physiological department of the National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(903)969-50-41. E-mail: tioutiounnik@mail.ru. ID B-2364-2015.ORCID ID 0000-0002-5830-5099
117997 Russia, Moscow, Ac. Oparina, 4 str.

For citation: Khachatryan Z.V., Kan N.E., Vtorushina V.V., Krechetova L.V., Kharchenko D.K., Mantrova D.A., Tyutyunnik V.L. Role of transforming growth factor-β in the formation of fetal growth restriction.
Akusherstvo i Ginekologiya / Obstetrics and Gynecology. 2019; (11): 107-12. (in Russian).
http://dx.doi.org/10.18565/aig.2019.11.107-112

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.