The role of NOD1 and NOD2 receptors in recognizing pathogens in the female reproductive tract
NOD1 and NOD2 receptors belong to the NOD-like receptor (NLR) family. They are cellular cytosolic innate immune receptors that recognize the components of bacterial peptidoglycan and viral RNA. NOD1 and NOD2 are expressed in all organs of the female reproductive tract, with their maximum expression observed in the fallopian tubes. The endometrial expression of NOD1 mRNA does not depend on the phase of the menstrual cycle, while the expression of NOD2 is maximal in the late secretory phase. NOD1 and NOD2 are able to recognize a number of opportunistic and pathogenic bacteria, viruses, and protozoa. Some microorganisms (Listeria monocytogenes, Neisseria gonorrhoeae) have mechanisms to avoid recognition, which ensures their long-term intracellular persistence.Lebedeva O.P.
Keywords
References
1. Сухих Г.Т., Ванько Л.В. Иммунные факторы в этиологии и патогенезе осложнений беременности. Акушерство и гинекология. 2012; 1: 128-36. [Sukhikh G.T., Vanko L.V. Immune factors in the etiology and pathogenesis of pregnancy complications. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2012; 1: 128-136. (in Russian)]
2. Лебедева О.П., Кирко Р. Экспрессия Толл-подобных рецепторов в женском репродуктивном тракте и ее гормональная регуляция. Научные результаты биомедицинских исследований. 2018; 4(3): 50-65. [Lebedeva O.P., Qirko R. Expression of Toll-like receptors in the female reproductive tract and its hormone regulation. Research results in biomedicine. 2018; 3: 50-65 (in Russian)] https://dx.doi.org/10.18413/2313-8955-2018-4-3-0-1.
3. Гариб Ф.Ю., Ризопулу А.П. Инфламмасомы и воспаление. Российский иммунологический журнал. 2017; 11(4): 620-6. [Garib F.Yu., Rizopulu A.P. Inflammasomes and inflammation. Russian Journal of Immunology. 2017; 11(4): 620-626 (in Russian)]
4. Monk D., Sanchez-Delgado M., Fisher R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 2017; 154(6): R161-70.
5. Van Gorp H., Kuchmiy A., Van Hauwermeiren F., Lamkanfi M. NOD‐like receptors interfacing the immune and reproductive systems. FEBS J. 2014; 281(20): 4568-82. https://dx.doi.org/10.1111/febs.13014.
6. Lamkanfi M., Dixit V.M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 2012; 28: 137-61. https://dx.doi.org/10.1146/annurev-cellbio-101011-155745.
7. Lamkanfi M., Dixit V.M. Mechanisms and functions of inflammasomes. Cell. 2014; 157: 1013-22. https://dx.doi.org/10.1016/j.cell.2014.04.007.
8. Elinav E., Strowig T., Kau A.L., Henao-Mejia J., Thaiss C.A., Booth C.J. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011; 145(5): 745-57. https://dx.doi.org/10.1016/j.cell.2011.04.022.
9. Vladimer G.I., Weng D., Paquette S.W., Vanaja S.K., Rathinam V.A., Aune M.H. et al. The NLRP12 inflammasome recognizes Yersinia pestis. Immunity. 2012; 37(1): 96-107. https://dx.doi.org/10.1016/j.immuni.2012.07.006.
10. Khare S., Dorfleutner A., Bryan N.B., Yun C., Radian A.D., de Almeida L. et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012; 36(3): 464-76. https://dx.doi.org/10.1016/j.immuni.2012.02.001.
11. Hsu Y.M.S., Zhang Y., You Y., Wang D., Li H., Duramad O. et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 2007; 8(2): 198-205. https://dx.doi.org/10.1038/ni1426.
12. Philpott D.J., Girardin S.E. Nod-like receptors: sentinels at host membranes. Curr. Opin. Immunol. 2010; 22(4): 428-34. https://dx.doi.org/10.1016/j.coi.2010.04.010.
13. Saxena M., Yeretssian G. NOD-like receptors: master regulators of inflammation and cancer. Front. Immunol. 2014: 5; 327. https://dx.doi.org/10.3389/fimmu.2014.00327.
14. Zou Y., Lei W., He Z., Li Z. The role of NOD1 and NOD2 in host defense against chlamydial infection. FEMS Microbiol. Lett. 2016; 363(17): pii: fnw170. https://dx.doi.org/10.1093/femsle/fnw170.
15. Lupfer C., Kanneganti T.D. Unsolved mysteries in NLR biology. Front. Immunol. 2013; 4: 285. https://dx.doi.org/10.3389/fimmu.2013.00285.
16. Deretic V., Levine B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe. 2009; 5(6): 527-49. https://dx.doi.org/10.1016/j.chom.2009.05.016.
17. Hart K.M., Murphy A.J., Barrett K.T., Wira C.R., Guyre P.M., Pioli P.A. Functional expression of pattern recognition receptors in tissues of the human female reproductive tract. J. Reprod. Immunol. 2009; 80(1-2): 33-40. https://dx.doi.org/10.1016/j.jri.2008.12.004.
18. Ghosh M., Shen Z., Fahey J.V., Crist S.G., Patel M., Smith J.M. et al. Pathogen recognition in the human female reproductive tract: expression of intracellular cytosolic sensors NOD1, NOD2, RIG-1, and MDA5 and response to HIV-1 and Neisseria gonorrhea. Am. J. Reprod. Immunol. 2013; 69: 41-51. https://dx.doi.org/10.1111/aji.12019.
19. King A.E., Horne A.W., Hombach-Klonisch S., Mason J.I., Critchley H.O. Differential expression and regulation of nuclear oligomerization domain proteins NOD1 and NOD2 in human endometrium: a potential role in innate immune protection and menstruation. Mol. Hum. Reprod. 2009; 15: 311-9. https://dx.doi.org/10.1093/molehr/gap020.
20. Costello M.J., Joyce S.K., Abrahams V.M. NOD protein expression and function in first trimester trophoblast cells. Am. J. Reprod. Immunol. 2007; 57(1): 67-80. https://dx.doi.org/10.1111/j.1600-0897.2006.00447.x.
21. Domínguez-Martínez D.A., Núñez-Avellaneda D., Castañón-Sánchez C.A., Salazar M.I. NOD2: activation during bacterial and viral infections, polymorphisms and potential as therapeutic target. Rev. Invest. Clín. 2018; 70(1): 18-28. https://dx.doi.org/10.24875/RIC.17002327.
22. Moreira L., Zamboni D.S. NOD1 and NOD2 signaling in infection and inflammation. Front. Immunol. 2012; 3: 328. https://dx.doi.org/10.3389/fimmu.2012.00328.
23. Wang H., Yu G., Yu H., Gu M., Zhang J., Meng X. et al. Characterization of TLR2, NOD2, and related cytokines in mammary glands infected by Staphylococcus aureus in a rat model. Acta Vet. Scand. 2015; 57: 25. https://dx.doi.org/10.1186/s13028-015-0116-0.
24. Ogawa M., Yoshikawa Y., Mimuro H., Hain T., Chakraborty T., Sasakawa C. Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure. Autophagy. 2011; 7(3): 310-4.
25. Boneca I.G., Dussurget O., Cabanes D., Nahori M.A., Sousa S., Lecuit M. et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl. Acad. Sci. USA. 2007; 104(3): 997-1002. https://dx.doi.org/10.1073/pnas.0609672104.
26. Stevens J.S., Criss A.K. Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: neutrophilic host response, sustained infection, and clinical sequelae. Curr. Opin. Hematol. 2018; 25(1): 13-21. https://dx.doi.org/10.1097/MOH.0000000000000394.
27. Chan J.M., Dillard J.P. Attention seeker: production, modification, and release of inflammatory peptidoglycan fragments in Neisseria. J. Bacteriol. 2017; 199(20). pii: e00354-17. https://dx.doi.org/10.1128/JB.00354-17.
28. Knilans K.J., Hackett K.T., Anderson J.E., Weng C., Dillard J.P., Duncan J. A. Neisseria gonorrhoeae lytic transglycosylases LtgA and LtgD reduce host innate immune signaling through TLR2 and NOD2. ACS Infect. Dis. 2017; 3(9): 624-33. https://dx.doi.org/10.1021/acsinfecdis.6b00088.
29. Girardin S.E., Hugot J.P., Sansonetti P.J. Lessons from Nod2 studies: towards a link between Crohn's disease and bacterial sensing. Trends Immunol. 2003; 24(12): 652-8.
30. Kallapur S.G., Kramer B.W., Jobe A.H. Ureaplasma and BPD. Semin. Perinatol. 2013; 37(2): 94-101. https://dx.doi.org/10.1053/j.semperi.2013.01.005.
31. Packiam M., Weinrick B., Jacobs W.R. Jr., Maurelli A.T. Structural characterization of muropeptides from Chlamydia trachomatis peptidoglycan by mass spectrometry resolves “chlamydial anomaly”. Proc. Natl. Acad. Sci. USA. 2015; 112: 11660-5. https://dx.doi.org/10.1073/pnas.1514026112.
32. Welter-Stahl L., Ojcius D.M., Viala J., Girardin S., Liu W., Delarbre C. et al. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell. Microbiol. 2006; 8(6): 1047-57. https://dx.doi.org/10.1111/j.1462-5822.2006.00686.x.
33. Brankovic I., van Ess E.F., Noz M.P., Wiericx W.A.J., Spaargaren J., Morre S.A. et al. NOD1 in contrast to NOD2 functional polymorphism influence Chlamydia trachomatis infection and the risk of tubal factor infertility. Pathog. Dis. 2015; 73: 1-9. https://dx.doi.org/10.1093/femspd/ftu028.
34. Kavathas P.B., Boeras C.M., Mulla M.J., Abrahams V.M. Nod1, but not the ASC inflammasome, contributes to induction of IL-1β secretion in human trophoblasts after sensing of Chlamydia trachomatis. Mucosal Immunol. 2013; 6(2): 235-43. https://dx.doi.org/10.1038/mi.2012.63.
35. Fan Y.H., Roy S., Mukhopadhyay R., Kapoor A., Duggal P., Wojcik G.L. et al. Role of nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human cytomegalovirus control in vitro and in vivo. Proc. Natl. Acad. Sci. 2016; 113(48): E7818-27. https://dx.doi.org/10.1073/pnas.1611711113.
36. Kapoor A., Fan Y.H., Arav-Boger R. Bacterial muramyl dipeptide (MDP) restricts human cytomegalovirus replication via an IFN-β-dependent pathway. Sci. Rep. 2016; 6: 20295. https://dx.doi.org/10.1038/srep20295.
37. van der Graaf C.A., Netea M.G., Franke B., Girardin S.E., van der Meer J.W., Kullberg B.J. Nucleotide oligomerization domain 2 (Nod2) is not involved in the pattern recognition of Candida albicans. Clin. Vaccine Immunol. 2006; 13(3): 423-5. https://dx.doi.org/10.1128/CVI.13.3.423-425.2006.
38. Gow N.A.R., van de Veerdonk F.L., Brown A.J.P., Netea M.G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 2011; 10(2): 112;22. https://dx.doi.org/10.1038/nrmicro2711.
39. Shaw M.H., Reimer T., Sánchez-Valdepeñas C., Warner N., Kim Y.G., Fresno M., Nuñez G. T cell–intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat. Immunol. 2009; 10(12): 1267-74. https://dx.doi.org/10.1038/ni.1816.
Received 02.11.2018
Accepted 07.12.2018
About the Authors
Lebedeva, Olga P., MD, associate professor, professor of the Department of Obstetrics and Gynaecolgy of Belgorod State National Research University.308015, Russia, Belgorod, Pobedi str., 85; senior researcher of the Department of Genetics, Cytology and Bioengineering of Voronezh State University.
394018, Russia, Voronezh, Universitetskaya pl., 1. Tel.: +74722268591. E-mail: safonova2@yandex.ru ORCID 0000-0002-7188-6780
For citations: Lebedeva O.P. The role of NOD1 and NOD2 receptors in recognizing pathogens in the female reproductive tract. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2019; (5): 25-9. (in Russian)
http://dx.doi.org/10.18565/aig.2019.5.25-29