Features of endometrial tissue metabolism of androgens: a modern view

Gavisova A.A., Shevtsova M.A., Tskhovrebova L.T.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
The endometrium, the function of which depends on sex steroids synthesized in the ovaries, is one of the self-renewal systems with high regeneration in the human body. Numerous studies are devoted to the local study of the intracrinology of sex hormones in endometrial tissue. The activation and inactivation of sex steroids by the expression of hormones and enzymes play a key role in the functional activity of the endometrium, which is a guarantee of its competence for implantation and regeneration. The increased expression of aromatases is known to be necessary to create the optimal conditions for implantation, gestation, and prolonged pregnancy.
Measurement of endometrial tissue concentrations of steroids using liquid chromatography and tissue mass spectrometry could answer only a few questions about the role of synthesis of sex steroids, including endometrial androgens that act as active ligands for their receptors and as substrates for the biosynthesis of estrogens. A vivid model of the impaired expression of aromatase, the key enzyme for steroidogenesis, can be observed in the pathogenesis of endometriosis and endometrial cancer, which has led to the design of targeted drugs.
Conclusion: The active design of targeted drugs of selective androgen and estrogen receptor modulators arouses interest in their clinical efficacy in various endometrial diseases. Realizing the role of the effects of sex steroids on different organs and tissues in the female body, including cognitive, sexual functions and the realization of reproductive potential, it is necessary to individualize therapy, taking into account the peculiarities of their intracellular influence and the possibility of using them in each clinical case.

Keywords

intracrinology
estradiol
testosterone
dehydroepiandrosterone
endometrium

References

  1. Labrie F. Intracrinology. Mol. Cell. Endocrinol. 1991; 78(3): 113-8. https://dx.doi.org/10.1016/0303-7207(91)90116-a.
  2. Павлович С.В., Юрова М.В., Чаговец В.В., Франкевич В.Е., Стародубцева Н.Л., Чупрынин В.Д., Сухих Г.Т. Особенности профиля стероидных гормонов крови пациентов репродуктивного возраста с распространенным эндометриозом. Акушерство и гинекология. 2021; 3: 90-100. [Pavlovich S.V., Yurova M.V., Chagovets V.V., Frankevich V.E., Starodubtseva N.L., Chuprynin V.D., Sukhikh G.T. Features of the profile of steroid hormones in the blood of patients of reproductive age with advanced endometriosis. Obstetrics and gynecology. 2021; 3: 90-100. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.3.90-100.
  3. Ito K., Miki Y., Suzuki T., McNamara K.M., Sasano H. In situ androgen and estrogen biosynthesis in endometrial cancer: Focus on androgen actions and intratumoral production. Endocr. Relat. Cancer. 2016; 23(7): R323-35. https://dx.doi.org/10.1530/ERC-15-0470.
  4. Gibson D.A., McInnes K.J., Critchley H.O., Saunders P.T. Endometrial intracrinology – generation of an estrogen-dominated microenvironment in the secretory phase of women. J. Clin. Endocrinol. Metab. 2013; 98(11): E1802-6. https://dx.doi.org/10.1210/jc.2013-2140.
  5. Critchley H.O., Saunders P.T. Hormone receptor dynamics in a receptive human endometrium. Reprod. Sci. 2009; 16(2): 191-9. https://dx.doi.org/10.1177/1933719108331121.
  6. Thiruchelvam U., Dransfield I., Saunders P.T., Critchley H.O. The importance of the macrophage within the human endometrium. J. Leukoc. Biol. 2013; 93(2): 217-25. https://dx.doi.org/10.1189/jlb.0712327.
  7. Maybin J.A., Critchley, H.O. Menstrual physiology: Implications for endometrial pathology and beyond. Hum. Reprod. Update. 2015; 21(6): 748-61. https://dx.doi.org/10.1093/humupd/dmv038.
  8. Zhu B.T., Han G.-Z., Shim J.-Y., Wen Y., Jiang X.-R. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology. 2006; 147(9): 4132-50. https://dx.doi.org/10.1210/en.2006-0113.
  9. Winuthayanon W., Lierz S.L., Delarosa K.C., Sampels S.R., Donoghue L.J., Hewitt S.C., Korach K.S. Juxtacrine activity of estrogen receptor alpha in uterine stromal cells is necessary for estrogen-induced epithelial cell proliferation. Sci. Rep. 2017; 7(1): 8377. https://dx.doi.org/10.1038/s41598-017-07728-1.
  10. Stárka L., Rácz B., Šrámková M., Hill M., Dušková M. Daily profiles of dehydroepiandrosterone and its hydroxylated metabolites with respect to food intake. Prague Med. Rep. 2015; 116(1): 40-8. https://dx.doi.org/10.14712/23362936.2015.44.
  11. Gibson D.A., Esnal-Zufiaurre A., Bajo-Santos C., Collins F., Critchley H.O.D., Saunders P.T.K. Profiling the expression and function of oestrogen receptor isoform ER46 in human endometrial tissues and uterine natural killer cells. Hum. Reprod. 2020; 35(3): 641-51. https://dx.doi.org/10.1093/humrep/dez306.
  12. Winuthayanon W., Hewitt S.C., Korach K.S. Uterine epithelial cell estrogen receptor alpha-dependent and -independent genomic profiles that underlie estrogen responses in mice. Biol. Reprod. 2014; 91(5): 110. https://dx.doi.org/10.1095/biolreprod.114.120170.
  13. Hausknecht V., de la Osa E.L., Gurpide E. In vitro metabolism of C19 steroids in human endometrium. J. Steroid Biochem. 1982; 17(6): 621-9. https://dx.doi.org/10.1016/0022-4731(82)90563-5.
  14. Keski-Rahkonen P., Huhtinen K., Desai R., Harwood D.T., Handelsman D.J., Poutanen M., Auriola S. LC-MS analysis of estradiol in human serum and endometrial tissue: Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J. Mass Spectrom. 2013; 48(9): 1050-8. https://dx.doi.org/10.1002/jms.3252.
  15. Huhtinen K., Saloniemi-Heinonen T., Keski-Rahkonen P., Desai R., Laajala D., Stahle M. et al. Intra-tissue steroid profiling indicates differential progesterone and testosterone metabolism in the endometrium and endometriosis lesions. J. Clin. Endocrinol. Metab. 2014; 99(11): E2188-97. https://dx.doi.org/10.1210/jc.2014-1913.
  16. Burger H.G. Androgen production in women. Fertil. Steril. 2002; 7(Suppl. 4): S3-5. https://dx.doi.org/10.1016/s0015-0282(02)02985-0.
  17. Gibson D.A., Foster P.A., Simitsidellis I., Critchley H.O.D., Kelepouri O., Collins F., Saunders P.T.K. Sulfation pathways: a role for steroid sulphatase in intracrine regulation of endometrial decidualisation. J. Mol. Endocrinol. 2018; 61(2): M57-65. https://dx.doi.org/10.1530/JME-18-0037.
  18. Mueller J.W., Gilligan L.C., Idkowiak J., Arlt W., Foster P.A. The regulation of steroid action by sulfation and desulfation. Endocr. Rev. 2015; 36(5): 526-63. https://dx.doi.org/10.1210/er.2015-1036.
  19. Rubin G.L., Harrold A.J., Mills J.A., Falany C.N., Coughtrie M.W. Regulation of sulphotransferase expression in the endometrium during the menstrual cycle, by oral contraceptives and during early pregnancy. Mol. Hum. Reprod. 1999; 5(11): 995-1002. https://dx.doi.org/10.1093/molehr/5.11.995.
  20. Gibson D.A., Simitsidellis I., Kelepouri O., Critchley H.O.D., Saunders P.T.K. Dehydroepiandrosterone enhances decidualization in women of advanced reproductive age. Fertil. Steril. 2018; 109(4): 728-34. https://dx.doi.org/10.1016/j.fertnstert.2017.12.024.
  21. Catalano R.D., Wilson M.R., Boddy S.C., Jabbour H.N. Comprehensive expression analysis of prostanoid enzymes and receptors in the human endometrium across the menstrual cycle. Mol. Hum. Reprod. 2011; 17(3): 182-92. https://dx.doi.org/10.1093/molehr/gaq094.
  22. Gibson D.A., Simitsidellis I., Cousins F.L., Critchley H.O., Saunders P.T. Intracrine androgens enhance decidualization and modulate expression of human endometrial receptivity genes. Sci. Rep. 2016; 6: 19970. https://dx.doi.org/10.1038/srep19970.
  23. Чернуха Г.Е., Найдукова А.А., Удовиченко М.А., Каприна Е.К., Иванец Т.Ю. Андрогенный профиль пациенток с синдромом поликистозных яичников и его взаимосвязь с метаболической дисфункцией. Акушерство и гинекология. 2019; 11: 122-8. [Chernukha G.E., Naidukova A.A., Udovichenko M.A., Kaprina E.K., Ivanets T.Yu. Androgenic profile of patients with polycystic ovary syndrome and its relationship with metabolic dysfunction. Obstetrics and gynecology. 2019; 11: 122-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.11.122-128.
  24. Simitsidellis I., Esnal-Zuffiaure A., Kelepouri O., O'Flaherty E., Gibson D.A., Saunders P.T.K. Selective androgen receptor modulators (SARMs) have specific impacts on the mouse uterus. J. Endocrinol. 2019; 242(3): 227-239. https://dx.doi.org/10.1530/JOE-19-0153.
  25. Narayanan R., Coss C.C., Dalton J.T. Development of selective androgen receptor modulators (SARMs). Mol. Cell. Endocrinol. 2018; 465: 134-42. https://dx.doi.org/10.1016/j.mce.2017.06.013.
  26. Whitaker L.H., Murray A.A., Matthews R., Shaw G., Williams A.R., Saunders P.T., Critchley H.O. Selective progesterone receptor modulator (SPRM) ulipristal acetate (UPA) and its effects on the human endometrium. Hum. Reprod. 2017; 32(3): 531-5 https://dx.doi.org/4. 10.1093/humrep/dew359.
  27. Mustonen M.V., Isomaa V.V., Vaskivuo T., Tapanainen J., Poutanen M.H., Stenback F. et al. Human 17β-hydroxysteroid dehydrogenase type 2 messenger ribonucleic acid expression and localization in term placenta and in endometrium during the menstrual cycle. J. Clin. Endocrinol. Metab. 1998; 83(4): 1319-24. https://dx.doi.org/10.1210/jcem.83.4.4709.
  28. Day J.M., Foster P.A., Tutill H.J., Parsons M.F., Newman S.P., Chander S.K. et al. 17beta-Hydroxysteroid dehydrogenase type 1, and not type 12, is a target for endocrine therapy of hormone-dependent breast cancer. Int. J. Cancer. 2008; 122(9): 1931-40. https://dx.doi.org/10.1002/ijc.23350.
  29. Delvoux B., D'Hooghe T., Kyama C., Koskimies P., Hermans R.J., Dunselman G.A., Romano A. Inhibition of type 1 17beta-hydroxysteroid dehydrogenase impairs the synthesis of 17beta-estradiol in endometriosis lesions. J. Clin. Endocrinol. Metab. 2014; 99(1): 276-84. https://dx.doi.org/10.1210/jc.2013-2503.
  30. van Weelden W.J., Massuger L.F.A.G., Pijnenborg J.M.A., Romano A. Anti-estrogen treatment in endometrial cancer: a systematic review. Front. Oncol. 2019; 9: 359. https://dx.doi.org/10.3389/fonc.2019.00359.
  31. Rizner T.L., Penning T.M. Aldo-keto reductase 1C3-Assessment as a new target for the treatment of endometriosis. Pharmacol. Res. 2020; 152: 104446. https://dx.doi.org/10.1016/j.phrs.2019.104446.
  32. Das A., Li Q., Laws M.J., Kaya H., Bagchi M.K., Bagchi I.C. Estrogen-induced expression of Fos-related antigen 1 (FRA-1) regulates uterine stromal differentiation and remodeling. J. Biol. Chem. 2012; 287(23): 19622-30. https://dx.doi.org/10.1074/jbc.M111.297663.
  33. Das A., Mantena S.R., Kannan A., Evans D.B., Bagchi M.K., Bagchi I.C. De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Proc. Natl. Acad. Sci. USA. 2009; 106(30): 12542-7. https://dx.doi.org/10.1073/pnas.0901647106.
  34. Simitsidellis I., Saunders P.T.K., Gibson D.A. Androgens and endometrium: New insights and new targets. Mol. Cell. Endocrinol. 2018; 465: 48-60. https://dx.doi.org/10.1016/j.mce.2017.09.022.
  35. Rothman M.S., Carlson N.E., Xu M., Wang C., Swerdloff R., Lee P. et al. Reexamination of testosterone, dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in postmenopausal women measured by liquid chromatography-tandem mass spectrometry. Steroids. 2011; 76(1-2): 177-82. https://dx.doi.org/10.1016/j.steroids.2010.10.010.
  36. Bulun S.E., Lin Z., Zhao H., Lu M., Amin S., Reierstad S., Chen D. Regulation of aromatase expression in breast cancer tissue. Ann. N. Y. Acad. Sci. 2009; 1155: 121-31. https://dx.doi.org/10.1111/j.1749-6632.2009.03705.x.
  37. Brown J., Farquhar C. Endometriosis: an overview of cochrane review. Cochrane Database Syst. Rev. 2014; (3): CD009590. https://dx.doi.org/10.1002/14651858.CD009590.pub2.
  38. Attar E., Bulun S.E. Aromatase and other steroidogenic genes in endometriosis: translational aspects. Hum. Reprod. Update 2006; 12(1): 49-56. https://dx.doi.org/10.1093/humupd/dmi034.
  39. Cheong Y.C., Shelton J.B., Laird S.M., Richmond M., Kudesia G., Li T.C., Ledger W.L. IL-1, IL-6 and TNF-α concentrations in the peritoneal fluid of women with pelvic adhesions. Hum. Reprod. 2002; 17(1): 69-75. https://dx.doi.org/10.1093/humrep/17.1.69.
  40. Noble L.S., Takayama K., Zeitoun K.M., Putman J.M., Johns D.A., Hinshelwood M.M. et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J. Clin. Endocrinol. Metab. 1997; 82(2): 600-66. https://dx.doi.org/10.1210/jcem.82.2.3783.
  41. Attar E., Tokunaga H., Imir G., Yilmaz M.B., Redwine D., Putman M. et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J. Clin. Endocrinol. Metab. 2009; 94(2): 623-31. 10.1210/jc.2008-1180.
  42. Huhtinen K., Saloniemi-Heinonen T., Keski-Rahkonen P., Desai R., Laajala D., Stahle M. et al. Intra-tissue steroid profiling indicates differential progesterone and testosterone metabolism in the endometrium and endometriosis lesions. J. Clin. Endocrinol. Metab. 2014; 99(11): E2188-97. https://dx.doi.org/10.1210/jc.2014-1913.
  43. Salah M., Abdelsamie A.S., Frotscher M. First dual inhibitors of steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17beta-HSD1): designed multiple ligands as novel potential therapeutics for estrogen-dependent diseases. J. Med. Chem. 2017; 60(9): 4086-92. https://dx.doi.org/10.1021/acs.jmedchem.7b00062.
  44. Bulun S.E., Chen D., Lu M., Zhao H., Cheng Y., Demura M. et al. Aromatase excess in cancers of breast, endometrium and ovary. J. Steroid Biochem. Mol. Biol. 2007; 106(1-5): 81-96. https://dx.doi.org/10.1016/j.jsbmb.2007.05.027.
  45. Sasano H., Kaga K., Sato S., Yajima A., Nagura H., Harada N. Aromatase cytochrome P450 gene expression in endometrial carcinoma. Br. J. Cancer. 1996; 74(10): 1541-4. https://dx.doi.org/10.1038/bjc.1996.586.
  46. Cornel K.M., Krakstad C., Delvoux B., Xanthoulea S., Jori B., Bongers M.Y. et al. High mRNA levels of 17β-hydroxysteroid dehydrogenase type 1 correlate with poor prognosis in endometrial cancer. Mol. Cell. Endocrinol. 2017; 442: 51-7. https://dx.doi.org/10.1016/j.mce.2016.11.030.
  47. Kamal A.M., Bulmer J.N., DeCruze S.B., Stringfellow H.F., Martin-Hirsch P., Hapangama D.K. Androgen receptors are acquired by healthy postmenopausal endometrial epithelium and their subsequent loss in endometrial cancer is associated with poor survival. Br. J. Cancer. 2016; 114(6): 688-96. https://dx.doi.org/10.1038/bjc.2016.16.
  48. Smuc T., Rupreht R., Sinkovec J., Adamski J., Rizner T.L. Expression analysis of estrogen-metabolizing enzymes in human endometrial cancer. Mol. Cell. Endocrinol. 2006; 248(1-2): 114-7. https://dx.doi.org/10.1016/j.mce.2005.10.013.
  49. Tanaka S., Miki Y., Hashimoto C., Takagi K., Doe Z., Li B. et al. The role of 5α-reductase type 1 associated with intratumoral dihydrotestosterone concentrations in human endometrial carcinoma. Mol. Cell. Endocrinol. 2015; 401: 56-64. https://dx.doi.org/10.1016/j.mce.2014.11.022.

Received 14.05.2021

Accepted 24.06.2021

About the Authors

Alla A. Gavisova, Ph.D., Senior Researcher of the 1st Gynecology Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, gavialla@yandex.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Marina A. Shevtsova, medical resident, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare
of Russian Federation, +7(911)039-13-20, marina_981995@mail.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Linda T. Tskhovrebova, medical resident, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare
of Russian Federation, +7(989)748-48-88, linda.tskhovrebova@mail.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.

Authors’ contributions: Gavisova A.A., Shevtsova M.A., Tskhovrebova L.T. – review on the topic of the publication; writing the article; final approval of the version for publication.
Conflicts of interest: The authors declare that there are no possible conflicts of interest.
Funding: The investigation has not been sponsored.

For citation: Gavisova A.A., Shevtsova M.A., Tskhovrebova L.T. Features of endometrial tissue metabolism of androgens: a modern view.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 9: 21-27 (in Russian)
https://dx.doi.org/10.18565/aig.2021.9.21-27

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.