Role of mitochondrial dysfunction in the pathogenesis of premature birth

Medzhidova M.K., Tyutyunnik V.L., Kan N.Е., Vysokikh M.Yu.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
The pathophysiology of premature birth remains insufficiently studied. One of the mechanisms of is development is considered to be mitochondrial dysfunction and an imbalance between increased oxidative stress and impaired antioxidant protection. At the molecular level, the changed and impaired mitochondrial function is caused by a reduction in the metachondrial transfer of major metabolites; by a change or a loss in maintaining the electric and chemical transmembrane potential of the inner mitochondrial membrane. In consequence of these modifications, oxidative phosphorylation becomes less effective, accordingly causes a reduction in ATP production. The division and creation of new mitochondria, митохондрий, the removal and complete degradation of dysfunctional mitochondria (mitophagia) can affect the function of the placenta, including its development, nutrient exchange and hormonal release. The modifications of mitochondrial function may be mediated or may lower the impact of poor gestational conditions on placental function, therefore the risk of pregnancy complications, including premature birth.
Conclusion: Identification of molecular pathways responsible for the elimination of dysfunctional mitochondrial may play a key role and be one of the components of the pathogenesis of premature birth.

Authors' contributions: Medzhidova M.K., Tyutyunnik V.L., Kan N.Е., Vysokikh M.Yu. – concept and development of the design of the investigation, obtaining the data to be analyzed, collection of publications, processing and analysis of material on the topic, writing the text of the manuscript, editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The investigation has not been sponsored.
For citation: Medzhidova M.K., Tyutyunnik V.L., Kan N.Е., Vysokikh M.Yu. Role of mitochondrial dysfunction in the pathogenesis of premature birth. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (5): 5-11 (in Russian)
https://dx.doi.org/10.18565/aig.2023.31

Keywords

premature birth
mitochondrial dysfunction
oxidative stress
antioxidative protection
mitochondrial DNA

References

1. Министерство здравоохранения Российской Федерации. Преждевременные роды. Клинические рекомендации. М.; 2020. 54с. [Ministry of Health of the Russian Federation. Premature birth. Clinical guidelines. Moscow; 2020. 54p. (in Russian)].

2. Савельева Г.М., Шалина Р.И., Курцер М.А., Клименко П.А., Сичинава Л.Г., Панина О.Б., Плеханова Е.Р., Выхристюк Ю.В., Лебедев Е.В. Преждевременные роды, как важнейшая проблема современного акушерства. Акушерство и гинекология. 2012; 8‑2: 4‑10. [Savelyeva G.M., Shalina R.I., Kurtser M.A., Klimenko P.A., Sichinava L.G., Panina O.B., Plekhanova E.R., Vykhristyuk Yu.V., Lebedev E.V. Premature birth as the most important problem of modern obstetrics. Obstetrics and Gynecology. 2012; (8‑2): 4‑10. (in Russian)].

3. Chang H.H., Larson J., Blencowe H., Spong C.Y., Howson C.P., Cairns-Smith S. et al.; Born Too Soon preterm prevention analysis group. Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. Lancet. 2013; 381(9862): 223‑34. https://dx.doi.org/10.1016/S0140‑6736(12)61856‑X.

4. Hallman D.M., Holtermann A., Björklund M., Gupta N., Nørregaard Rasmussen C.D. Sick leave due to musculoskeletal pain: determinants of distinct trajectories over 1 year. Int. Arch. Occup. Environ. Health. 2019; 92(8): 1099‑108. https://dx.doi.org/10.1007/s00420‑019‑01447‑y.

5. Белоусова В.С., Стрижаков А.Н., Свитич О.А., Тимохина Е.В., Кукина П.И., Богомазова И.М., Пицхелаури Е.Г. Преждевременные роды: причины, патогенез, тактика. Акушерство и гинекология. 2020; 2: 82‑7. [Belousova V.S., Strizhakov A.N., Svitich O.A., Timokhina E.V., Kukina P.I., Bogomazova I.M., Pitskhelauri E.G. Premature birth: causes, pathogenesis, tactics. Obstetrics and Gynecology. 2020; (2): 82‑7. (in Russian)]. https://dx.doi.org/10.18565/ aig.2020.2.82‑87.

6. Romero R., Conde-Agudelo A., Da Fonseca E., O'Brien J.M., Cetingoz E., Creasy G.W. et al. Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: a meta‑analysis of individual patient data. Am. J. Obstet. Gynecol. 2018; 218(2): 161‑80. https://dx.doi.org/10.1016/j.ajog.2017.11.576.

7. Frey H.A., Klebanoff M.A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 2016; 21(2): 68‑73. https://dx.doi.org/10.1016/ j.siny.2015.12.011.

8. Белоусова В.С., Стрижаков А.Н., Тимохина Е.В., Богомазова И.М., Пицхелаури Е.Г., Емельянова Е.С. Преждевременные роды: как управлять токолизом? Акушерство и гинекология. 2019; 6: 102‑7. [Belousova V.S., Strizhakov A.N., Timokhina E.V., Bogomazova I.M., Pitskhelauri E.G., Emelyanova E.S. Preterm birth: how to manage tocolysis? Obstetrics and Gynecology. 2019; (6): 102‑7. (in Russian)]. https://dx.doi.org/10.18565/ aig.2019.6.102‑107.

9. Walani S.R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 2020; 150(1): 31‑3. https://dx.doi.org/10.1002/ijgo.13195.

10. Плотоненко З.А., Сенькевич О.А., Овчинникова О.В. Особенности метаболического и неврологического статуса детей, рожденных от ранних преждевременных родов, в 38‑40 нед постконцептуального возраста: наблюдательное исследование с проспективной оценкой исходов. Неонатология: новости, мнения, обучение. 2020; 8(4): 10‑7. [Plotonenko Z.A., Senkevich O.A., Ovchinnikova O.V. Features of the metabolic and neurological status of children born from early preterm birth at 38‑40 weeks of postconceptual age: an observational study with a prospective assessment of outcomes. Neonatology: News, Opinions, Training. 2020; 8(4): 10‑7. (in Russian)].

11. Заваденко Н.Н., Давыдова Л.А. Неврологические нарушения и расстройства психического развития у детей, рожденных недоношенными (с экстремально низкой, очень низкой и низкой массой тела). Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119(12): 12 9. [Zavadenko N.N., Davydova L.A. Neurological and neurodevelopmental disorders in preterm‑born children (with extremely low, very low or low body weight). Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2019; 119(12): 12 9. (in Russian)]. https://dx.doi.org/10.17116/jnevro201911912112.

12. Супрун С.В., Кудерова Н.И., Супрун Е.Н., Морозова О.Н., Евсеева Г.П., Лебедько О.А. Комплексная оценка митохондриальных изменений иммунокомпетентных клеток крови у беременных женщин при срочных и преждевременных родах. Медицинская иммунология. 2021; 23(3): 557‑68. [Suprun S.V., Kuderova N.I., Suprun E.N., Morozova O.N., Evseeva G.P., Lebedko O.A. Comprehensive assessment of mitochondrial changes in immunocompetent blood cells in pregnant women with urgent and premature births. Medical Immunology. 2021; 23(3): 557‑68. (in Russian)].

13. Eftekharpour E., Fernyhough P. Oxidative stress and mitochondrial dysfunction associated with peripheral neuropathy in type 1 diabetes. Antioxid. Redox Signal. 2022; 37(7‑9): 578‑96. https://dx.doi.org/10.1089/ars.2021.0152.

14. Yan F., Li K., Xing W., Dong M., Yi M., Zhang H. Role of iron‑related oxidative stress and mitochondrial dysfunction in cardiovascular diseases. Oxid. Med. Cell. Longev. 2022; 2022: 5124553. https://dx.doi.org/10.1155/2022/ 5124553.

15. Perez Ortiz J.M., Swerdlow R.H. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br. J. Pharmacol. 2019; 176(18): 3489‑507. https://dx.doi.org/10.1111/bph.14585.

16. Rose S., Niyazov D.M., Rossignol D.A., Goldenthal M., Kahler S.G., FryeR.E. Clinical and molecular characteristics of mitochondrial dysfunction in autisms spectrum disorder. Mol. Diagn. Ther. 2018; 22(5): 571‑93. https://dx.doi.org/10.1007/s40291‑018‑0352‑x.

17. Zhu C.C., Traboulsi E.I., Parikh S. Ophthalmological findings in 74 patients with mitochondrial disease. Ophthalmic Genet. 2017; 38(1): 67‑9. https://dx.doi.org/ 10.3109/13816810.2015.1130153.

18. Kisilevsky E., Freund P., Margolin E. Mitochondrial disorders and the eye. Surv. Ophthalmol. 2020; 65(3): 294‑311. https://dx.doi.org/10.1016/ j.survophthal.2019.11.001.

19. Agnihotri A., Aruoma O.I. Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J. Am. Coll. Nutr. 2020; 39(1): 16‑27. https://dx.doi.org/10.1080/07315724.2019.1683379.

20. Murphy E., Ardehali H., Balaban R.S., DiLisa F., Dorn G.W. 2nd, Kitsis R.N. et al.; American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ. Res. 2016; 118(12): 1960‑91. https://dx.doi.org/10.1161/RES.0000000000000104.

21. Siasos G., Tsigkou V., Kosmopoulos M., Theodosiadis D., Simantiris S., Tagkou N.M. et al. Mitochondria and cardiovascular diseases‑from pathophysiology to treatment. Ann. Transl. Med. 2018; 6(12): 256. https://dx.doi.org/10.21037/ atm.2018.06.21.

22. Johnson J., Mercado-Ayon E., Mercado-Ayon Y., Dong Y.N., Halawani S., Ngaba L., Lynch D.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys. 2021; 702: 108698. https://dx.doi.org/10.1016/j.abb.2020.108698.

23. Carmo C., Naia L., Lopes C., Rego A.C. Mitochondrial dysfunction in huntington's disease. Adv. Exp. Med. Biol. 2018; 1049: 59‑83. https://dx.doi.org/10.1007/978‑3‑319‑71779‑1_3.

24. Cuperfain A.B., Zhang Z.L., Kennedy J.L., Gonçalves V.F. The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease. Mol. Neuropsychiatry. 2018; 4(1): 52‑69. https://dx.doi.org/10.1159/000488031.

25. Мишура Л.Г., Гайковая Л.Б., Родионов Г.Г., Дадали В.А. Активность комплексов дыхательной цепи мононуклеаров периферической крови как маркер митохондриальной дисфункции при острой сердечно‑сосудистой патологии. Медицинский алфавит. 2019; 2: 16‑9. [Mishura L.G., Gaikovaya L.B., Rodionov G.G., Dadali V.A. Activity of respiratory chain complexes of peripheral blood mononuclear cells as marker of mitochondrial dysfunction in acute cardiovascular pathology. Medical Alphabet. 2019; (2): 16‑9. (in Russian)].

26. Salin K., Auer S.K., Rudolf A.M., Anderson G.J., Selman C., Metcalfe N.B. Variation in metabolic rate among individuals is related to tissue‑specific differences in mitochondrial leak respiration. Physiol. Biochem. Zool. 2016; 89(6): 511‑23. https://dx.doi.org/10.1086/688769.

27. Salin K., Villasevil E.M., Anderson G.J., Selman C., Chinopoulos C., Metcalfe N.B. The RCR and ATP/O indices can give contradictory messages about mitochondrial efficiency. Integr. Comp. Biol. 2018; 58(3): 486‑94. https://dx.doi.org/10.1093/icb/icy085.

28. Wacquier B., Combettes L., Dupont G. Cytoplasmic and mitochondrial calcium signaling: a two‑way relationship. Cold Spring Harb. Perspect. Biol. 2019; 11(10): a035139. https://dx.doi.org/10.1101/cshperspect.a035139.

29. Joo E.H., Kim Y.R., Kim N., Jung J.E., Han S.H., Cho H.Y. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. Int. J. Mol. Sci. 2021; 22(18): 10122. https://dx.doi.org/10.3390/ijms221810122.

30. Gorini S., De Angelis A., Berrino L., Malara N., Rosano G., Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid. Med. Cell. Longev. 2018; 2018: 7582730. https://dx.doi.org/10.1155/2018/7582730.

31. Pallag G., Nazarian S., Ravasz D., Bui D., Komlódi T., Doerrier C. et al. Proline oxidation supports mitochondria ATP production when complex I is inhibited. Int. J. Mol. Sci. 2022; 23(9): 5111. https://dx.doi.org/10.3390/ijms23095111.

32. Berry B.J., Trewin A.J., Amitrano A.M., Kim M., Wojtovich A.P. Use the protonmotive force: mitochondrial uncoupling and reactive oxygen species. J. Mol. Biol. 2018; 430(21): 3873‑91. https://dx.doi.org/10.1016/ j.jmb.2018.03.025.

33. Nesci S. A lethal channel between the ATP synthase monomers. Trends Biochem. Sci. 2018; 43(5): 311‑3. https://dx.doi.org/10.1016/j.tibs.2018.02.013.

34. Kawabata T., Yoshimori T. Autophagosome biogenesis and human health. Cell Discov. 2020; 6(1): 33. https://dx.doi.org/10.1038/s41421‑020‑0166‑y.

35. Адамян Л.В., Геворгян А.П. Аутофагия как новое звено в механизме развития нарушений репродуктивной системы. Проблемы репродукции. 2019; 25(5): 6 14. [Adamyan L.V., Gevorgyan A.P. Autophagy as a new link in the mechanism of development of reproductive system disorders. Russian Journal of Human Reproduction. 2019; 25(5): 6 14. (in Russian)].

36. Affourtit C., Wong H.S., Brand M.D. Measurement of proton leak in isolated mitochondria. Methods Mol. Biol. 2018; 1782: 157‑70. https://dx.doi.org/10.1007/978‑1‑4939‑7831‑1_9.

37. Moore T.A., Ahmad I.M., Zimmerman M.C. Oxidatives stress and preterm birth: An integrative review. Biol. Res. Nurs. 2018; 20(5): 497‑512. https://dx.doi.org/10.1177/1099800418791028.

38. Hussain T., Murtaza G., Metwally E., Kalhoro D.H., Kalhoro M.S., Rahu B.A. et al. The role of oxidative stress and antioxidant balance in pregnancy. Mediators Inflamm. 2021; 2021: 9962860. https://dx.doi.org/10.1155/2021/9962860.

39. Simon-Szabo Z., Fogarasi E., Nemes-Nagy E., Denes L., Croitoru M., Szabo B. Oxidative stress and peripartum outcomes (Review). Exp. Ther. Med. 2021; 22(1): 771. https://dx.doi.org/10.3892/etm.2021.10203.

40. Yang Z., Slone J., Wang X., Zhan J., Huang Y., Namjou B. et al. Validation of low‑coverage whole‑genome sequencing for mitochondrial DNA variants suggests mitochondrial DNA as a genetic cause of preterm birth. Hum. Mutat. 2021; 42(12): 1602‑14. https://dx.doi.org/10.1002/humu.24279.

41. Щеголев А.И., Серов В.Н. Клиническая значимость поражений плаценты. Акушерство и гинекология. 2019; 3: 54‑62. [Shchegolev A.I., Serov V.N. Clinical significance of lesions of the placenta. Obstetrics and Gynecology. 2019; (3): 54‑62. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.3.54‑62.

42. Pannala V.R., Camara A.K., Dash R.K. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: catalytic mechanism and nitric oxide inhibition. J. Appl. Physiol. (1985). 2016; 121(5): 1196‑207. https://dx.doi.org/10.1152/japplphysiol.00524.2016.

43. Погорелова Т.Н., Гунько В.О., Никашина А.А., Палиева Н.В., Аллилуев И.А., Ларичкин А.В. Нарушение регуляции редокс‑процессов в плаценте при ее дисфункции. Проблемы репродукции. 2019; 25(6): 112 8. [Pogorelova T.N., Gun'ko V.O., Nikashina A.A., Paliyeva N.V., Alliluev I.A., Larichkin A.V. Dysregulation of redox processes in the placenta during its dysfunction. Russian Journal of Human Reproduction. 2019; 25(6): 112 8. (in Russian)].

44. Yildirim R.M., Ergun Y., Basar M. Mitochondrial dysfunction, mitophagy and their correlation with perinatal complications: preeclampsia and low birth weight. Biomedicines. 2022; 10(10): 2539. https://dx.doi.org/10.3390/ biomedicines10102539.

45. Lu M., Sferruzzi-Perri A.N. Placental mitochondrial function in response to gestational exposures. Placenta. 2021; 104: 124‑37. https://dx.doi.org/10.1016/ j.placenta.2020.11.012.

46. Kumari S., Barton G.P., Goss K.N. Increased mitochondrial oxygen consumption in adult survivors of preterm birth. Pediatr. Res. 2021; 90(6): 1147‑52. https://dx.doi.org/10.1038/s41390‑021‑01387‑9.

47. Crawford N., Prendergast D., Oehlert J.W., Shaw G.M., Stevenson D.K., Rappaport N. et al. Divergent patterns of mitochondrial and nuclear ancestry are associated with the risk for preterm birth. J. Pediatr. 2018; 194: 40‑6.e4. https://dx.doi.org/10.1016/j.jpeds.2017.10.052.

48. Курносенко И.В., Долгушина В.Ф., Пастернак А.Е. Воспалительные изменения в последе у женщин с преждевременными и своевременными родами. Современные проблемы науки и образования. 2016; 3: 172. [Kurnosenko I.V., Dolgushina V.F., Pasternak A.E. Inflammatory changes in the placenta in women with premature and timely delivery. Modern Problems of Science and Education. 2016; (3): 172. (in Russian)].

49. Ремнева О.В., Колядо О.В., Песоцкая А.В., Стародубцев Е.Г., Гуменюк И.С. Патоморфологические особенности последов у пациенток с различными клиническими фенотипами спонтанных преждевременных родов. Акушерство и гинекология. 2021; 8: 111‑8. [Remneva O.V., Kolyado O.V., Pesotskaya A.V., Starodubtsev E.G., Gumenyuk I.S. Pathomorphological features of afterbirths in patients with different clinical phenotypes of spontaneous preterm birth. Obstetrics and Gynecology. 2021; (8): 111‑8. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.8.111‑118.

50. Косякова О.В., Беспалова О.Н., Сейидова Ч.И., Глотов А.С. Роль маркеров воспалительного ответа в прогнозировании преждевременных родов. Российский вестник акушера‑гинеколога. 2020; 20(3): 18 23. [Kosyakova O.V., Bespalova O.N., Seyidova Ch.I., Glotov A.S. The role of inflammatory response markers in predicting premature birth. Russian Bulletin of Obstetrician‑Gynecologist. 2020; 20(3): 18 23. (in Russian)].

51. Ardalan A., Smith M.D., Jelokhani-Niaraki M. Uncoupling proteins and regulated proton leak in mitochondria. Int. J. Mol. Sci. 2022; 23(3): 1528. https://dx.doi.org/10.3390/ijms23031528.

52. Gustafsson Å.B., Dorn G.W. 2nd. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process. Physiol. Rev. 2019; 99(1): 853‑92. https://dx.doi.org/10.1152/physrev.00005.2018.

Received 24.01.2023

Accepted 28.04.2023

About the Authors

Marzhanat К. Medzhidova, PhD, Doctoral student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(926)381-17-10, Researcher ID: GRR-7195-2022, SPIN-код: 5942-2320, Authors ID: 1162986, Scopus Author ID: 57191960453, https://orcid.org/0000-0001-6938-4207, 117997, Russia, Moscow, Ac. Oparina str., 4.
Victor L. Tyutyunnik, Professor, MD, PhD, Leading Researcher of Research and Development Service, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(903)969-50-41, tioutiounnik@mail.ru, Researcher ID: B-2364-2015, SPIN-код: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099, 117997, Russia, Moscow, Ac. Oparina str., 4.
Natalia E. Kan, Professor, MD, PhD, Deputy Director of Science, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(926)220-86-55, kan-med@mail.ru, Researcher ID: B-2370-2015, SPIN-код: 5378-8437, Authors ID: 624900, Scopus Author ID: 57008835600, https://orcid.org/0000-0001-5087-5946, 117997, Russia, Moscow, Ac. Oparina str., 4.
Mikhail Yu. Vysokikh, PhD, Head of Mitochondrial Medicine Research Group, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia, +7(495)438-76-33 (доб. 1472), m_vysokikh@oparina4.ru, Researcher ID: H-4744-2014, SPIN-код: 2742-0833, Authors ID: 6602218584, Scopus Author ID: 57008835600, https://orcid.org/0000-0002-4047-6201, 117997, Russia, Moscow, Ac. Oparina str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.