Mitochondrial DNA as a quality marker of gametes and embryos in assisted reproductive technologies programs

Lisitsyna O.I., Dolgushina N.V., Makarova N.P., Burmenskaya O.V.

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia
Mitochondria are the only cell organelles that have their own DNA. It has been shown that the mitochondrial DNA (mtDNA) level can vary significantly among different cell types and depend on the cell's need for energy in accordance with changing environmental conditions. Researchers consider the mtDNA level as a possible marker of the potential of gametes for fertilization, development of the embryo and its implantation.
The review presents and analyzes the domestic and foreign trials that study the mtDNA level in gametes, cumulus cells and embryos, as well as in the spent (collected after culturing the embryo) culture medium, depending on the outcomes of assisted reproductive technologies programs. A summary table of mtDNA studies in the spent culture medium is presented separately.
On the one hand, according to the literature, there is a trend that determines an increased potential for development, implantation, and the onset of clinical pregnancy for: embryos obtained from oocytes with an increased mtDNA level, blastocysts with a reduced mtDNA level in the cells of the trophectoderm and inner cell mass and an increased mtDNA level in the spent culture medium. On the other hand, a significant controversies remain in the literature regarding the effectiveness of mtDNA determination as an additional method for assessing the quality of gametes and embryos.
Conclusion: The question of the possibility of recommending the widespread use of mtDNA level assessment in one way or another remains unresolved. Therefore, additional large-scale well-designed studies are required.

Authors’ contributions: Dolgushina N.V., Lisitsyna O.I., Makarova N.P. – study concept and design; Lisitsyna O.I. – text writing and editing; Dolgushina N.V., Makarova N.P., Burmenskaya O.V. – text editing and publication approval.
Conflicts of interests: The authors declare no conflicts of interest.
Funding: The work was carried out within the framework of the state assignment for scientific work “Solving the problem of infertility in modern conditions by developing a clinical diagnostic model of infertile marriage and using innovative technologies in assisted reproduction programs”, No. 121040600410-7.
For citation: Lisitsyna O.I., Dolgushina N.V., Makarova N.P., Burmenskaya O.V. Mitochondrial DNA as a quality marker of gametes and embryos in assisted reproductive technologies programs.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (7): 20-26 (in Russian)
https://dx.doi.org/10.18565/aig.2023.94

Keywords

extracellular DNA
mitochondria
mitochondrial DNA
spent culture medium
assisted reproductive technologies (ART)
embryo morphology
embryo quality
oocyte quality
in vitro fertilization (IVF)

References

  1. Sayed G.A., Al-Sawaf H.A., Al-Sawaf A.H., Saeid M., Maged A., Ibrahim I.H. Mitochondrial DNA in Fresh versus frozen embryo culture media of polycystic ovarian syndrome patients undergoing invitro fertilization: a possible predictive marker of a successful pregnancy. Pharmgenomics Pers. Med. 2021; 14: 27-38. https://dx.doi.org/10.2147/PGPM.S284064.
  2. Lledo B., Ortiz J.A., Morales R., García-Hernández E., Ten J., Bernabeu A. et al. Comprehensive mitochondrial DNA analysis and IVF outcome. Hum. Reprod. Open. 2018; 2018(4): hoy023. https://dx.doi.org/10.1093/hropen/hoy023.
  3. Fragouli E., Spath K., Alfarawati S., Kaper F., Craig A., Michel C.E. et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015; 11(6): e1005241. https://dx.doi.org/10.1371/journal.pgen.1005241.
  4. Shi W.H., Ye M.J., Qin N.X., Zhou Z.Y., Zhou X.Y., Xu N.X. et al. Associations of sperm mtDNA copy number, DNA fragmentation index, and reactive oxygen species with clinical outcomes in ART treatments. Front. Endocrinol. (Lausanne). 2022; 13: 849534. https://dx.doi.org/10.3389/fendo.2022.849534.
  5. Kumar N. Sperm mitochondria, the driving force behind human spermatozoa activities: its functions and dysfunctions - a narrative review. Curr. Mol. Med. 2023; 23(4): 332-40. https://dx.doi.org/10.2174/1566524022666220408104047.
  6. Amor H., Hammadeh M.E. A systematic review of the impact of mitochondrial variations on male infertility. Genes (Basel). 2022; 13(7): 1182.https://dx.doi.org/10.3390/genes13071182.
  7. Durairajanayagam D., Singh D., Agarwal A., Henkel R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia. 2021; 53(1): e13666.https://dx.doi.org/10.1111/and.13666.
  8. Wu H., Whitcomb B.W., Huffman A., Brandon N., Labrie S., Tougias E. et al. Associations of sperm mitochondrial DNA copy number and deletion rate with fertilization and embryo development in a clinical setting. Hum. Reprod. 2019; 34(1): 163-70. https://dx.doi.org/10.1093/humrep/dey330.
  9. Rosati A.J., Whitcomb B.W., Brandon N., Buck Louis G.M., Mumford S.L., Schisterman E.F. et al. Sperm mitochondrial DNA biomarkers and couple fecundity. Hum. Reprod. 2020; 35(11): 2619-25. https://dx.doi.org/10.1093/humrep/deaa191.
  10. Tiegs A.W., Tao X., Landis J., Zhan Y., Franasiak J.M., Seli E. et al. Sperm mitochondrial DNA copy number is not a predictor of intracytoplasmic sperm injection (ICSI) cycle outcomes. Reprod. Sci. 2020; 27(6): 1350-6.https://dx.doi.org/10.1007/s43032-020-00163-0.
  11. Сыркашева А.Г., Красный А.М., Майорова Т.Д., Макарова Н.П., Долгушина Н.В. Изучение числа копий митохондриальной ДНК в ооцитах человека с различными морфологическими аномалиями. Молекулярная медицина. 2016; 5: 37-41. [Syrkasheva A.G., Krasny A.M., Mayorova T.D., Makarova N.P., Dolgushina N.V. Quantification of the number of mitochondrial DNA copies in human oocytes wih different morfological abnormalities. Molecular Medicine. 2016; (5): 37-41. (in Russian)].
  12. Ogino M., Tsubamoto H., Sakata K., Oohama N., Hayakawa H., Kojima T. et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J. Assist. Reprod. Genet. 2016; 33(3): 367-71. https://dx.doi.org/10.1007/s10815-015-0621-0.
  13. Lan Y., Zhang S., Gong F., Lu C., Lin G., Hu L. The mitochondrial DNA copy number of cumulus granulosa cells may be related to the maturity of oocyte cytoplasm. Hum. Reprod. 2020; 35(5): 1120-9. https://dx.doi.org/10.1093/humrep/deaa085.
  14. Anderson S.H., Glassner M.J., Melnikov A., Friedman G., Orynbayeva Z. Respirometric reserve capacity of cumulus cell mitochondria correlates with oocyte maturity. J. Assist. Reprod. Genet. 2018; 35(10): 1821-30.https://dx.doi.org/10.1007/s10815-018-1271-9.
  15. Королькова А.И., Мишиева Н.Г., Мартазанова Б.А., Бурменская О.В., Веюкова М.А., Екимов А.Н., Трофимов Д.Ю., Абубакиров А.Н. Значимость копийности митохондриальной ДНК в клетках кумулюса пациенток позднего репродуктивного возраста. Акушерство и гинекология. 2019; 10: 108-14. [Korolkova A.I., Mishieva N.G., Martazanova B.A., Burmenskaya O.V., Veyukova M.A., Ekimov A.N., Trofimov D.Yu., Abubakirov A.N. Implications of mitochondrial DNA copy number in cumulus cells in late reproductive-age women. Obstetrics and Gynecology. 2019; (10): 108-14. (in Russian)].https://dx.doi.org/10.18565/aig.2019.10.108-114.
  16. Desquiret-Dumas V., Clément A., Seegers V., Boucret L., Ferré-L'Hotellier V., Bouet P.E. et al. The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum. Reprod. 2017; 32(3): 607-14.https://dx.doi.org/10.1093/humrep/dew341.
  17. Fragouli E., McCaffrey C., Ravichandran K., Spath K., Grifo J.A., Munné S. et al. Clinical implications of mitochondrial DNA quantification on pregnancy outcomes: a blinded prospective non-selection study. Hum. Reprod. 2017; 32(11): 2340-7. https://dx.doi.org/10.1093/humrep/dex292.
  18. Diez-Juan A., Rubio C., Marin C., Martinez S., Al-Asmar N., Riboldi M. et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil. Steril. 2015; 104(3): 534-41.e1. https://dx.doi.org/10.1016/j.fertnstert.2015.05.022.
  19. Королькова А.И., Мишиева Н.Г., Мартазанова Б.А., Бурменская О.В., Екимов А.Н., Трофимов Д.Ю., Веюкова М.А., Кириллова А.О., Абубакиров А.Н. Повышение эффективности программ ЭКО на основании определения копийности митохондриальной ДНК в трофэктодерме эмбрионов. Акушерство и гинекология. 2019; 3: 98-104. [Korolkova A.I., Mishieva N.G., Martazanova B.A., Bourmenskaya O.V., Ekimov A.N., Trofimov D.Yu., Veyukova M.A., Kirillova A.O., Abubakirov A.N. Increasing the effectiveness of IVF programs by determining mitochondrial DNA copy number in embryonic trophectoderm. Obstetrics and Gynecology. 2019; (3): 98-104. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.3.98-104.
  20. Treff N.R., Zhan Y., Tao X., Olcha M., Han M., Rajchel J. et al. Levels of trophectoderm mitochondrial DNA do not predict the reproductive potential of sibling embryos. Hum. Reprod. 2017; 32(4): 954-62. https://dx.doi.org/10.1093/humrep/dex034.
  21. Victor A.R., Brake A.J., Tyndall J.C., Griffin D.K., Zouves C.G., Barnes F.L. et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil. Steril. 2017; 107(1): 34-42.e3. https://dx.doi.org/10.1016/j.fertnstert.2016.09.028.
  22. Klimczak A.M., Pacheco L.E., Lewis K.E., Massahi N., Richards J.P., Kearns W.G. et al. Embryonal mitochondrial DNA: relationship to embryo quality and transfer outcomes. J. Assist. Reprod. Genet. 2018; 35(5): 871-7. https://dx.doi.org/10.1007/s10815-018-1147-z.
  23. Непша О.С., Кулакова Е.В., Екимов А.Н., Драпкина Ю.С., Макарова Н.П., Краевая Е.Е., Калинина Е.А. Использование митохондриальной ДНК эмбрионов в качестве предиктора эффективности программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021; 11: 125-34. [Nepsha O.S., Kulakova E.V., Ekimov A.N., Drapkina Yu.S., Makarova N.P., Kraevaya E., Kalinina E.A. EValue of embryonic mitochondrial DNA in predicting the effectiveness of assisted reproductive technologies. Obstetrics and Gynecology. 2021; (11): 125-34. (in Russian)].https://dx.doi.org/10.18565/aig.2021.11.125-134.
  24. Hammond E., Shelling A., Cree L. Nuclear and mitochondrial DNA in blastocoele fluid and embryo culture medium: evidence and potential clinical use. Hum. Reprod. 2016; 31(8): 1653-61. https://dx.doi.org/10.1093/humrep/dew132.
  25. Zhang X., Sun Y., Dong X., Zhou J., Sun F., Han T. et al. Mitochondrial DNA and genomic DNA ratio in embryo culture medium is not a reliable predictor for in vitro fertilization outcome. Sci. Rep. 2019; 9: 5378. https://dx.doi.org/10.1038/s41598-019-41801-1.
  26. Hammond E., McGillivray B., Wicker S., Peek J.C., Shelling A.N., Stone P. et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil. Steril. 2017; 107(1): 220-8.e5.https://dx.doi.org/10.1016/j.fertnstert.2016.10.015.
  27. Kobayashi M., Kobayashi J., Shirasuna K., Iwata H. Abundance of cell-free mitochondrial DNA in spent culture medium associated with morphokinetics and blastocyst collapse of expanded blastocysts. Reprod. Med. Biol. 2020; 19(4): 404-14. https://dx.doi.org/10.1002/rmb2.12344.
  28. Stigliani S., Anserini P., Venturini P., Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum. Reprod. 2013; 28(10): 2652-60. https://dx.doi.org/10.1093/humrep/det314.
  29. Stigliani S., Persico L., Lagazio C., Anserini P., Venturini P., Scaruffi P. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol. Hum. Reprod. 2014; 20(12): 1238-46. https://dx.doi.org/10.1093/molehr/gau086.
  30. Stigliani S., Orlando G., Massarotti C., Casciano I., Bovis F., Anserini P. et al. Non-invasive mitochondrial DNA quantification on Day 3 predicts blastocyst development: a prospective, blinded, multi-centric study. Mol. Hum. Reprod. 2019; 25(9): 527-37. https://dx.doi.org/10.1093/molehr/gaz032.
  31. Макарова Н.П., Лисицына О.И., Непша О.С., Красный А.М., Садекова А.А., Незлина А.Л., Долгушина Н.В., Зингеренко Б.В., Калинина Е.А. Особенности профиля экспрессии митохондриальной ДНК в среде культивирования эмбрионов в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2022; 3: 89-96. [Makarova N.P., Lisitsyna O.I., Nepsha O.S., Krasnyi A.M., Sadekova A.A., Nezlina A.L., Dolgushina N.V., Zingerenko B.V., Kalinina E.A. Mitochondrial DNA expression profile in embryo culture medium in assisted reproductive technology. Obstetrics and Gynecology. 2022; (3): 89-96. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.3.89-96.
  32. Hashimoto S., Morimoto N., Yamanaka M., Matsumoto H., Yamochi T., Goto H. et al. Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J. Assist. Reprod. Genet. 2017; 34(5): 573-80.https://dx.doi.org/10.1007/s10815-017-0886-6.
  33. Lee Y.X., Chen C.H., Lin S.Y., Lin Y.H., Tzeng C.R. Adjusted mitochondrial DNA quantification in human embryos may not be applicable as a biomarker of implantation potential. J. Assist. Reprod. Genet. 2019; 36(9): 1855-65.https://dx.doi.org/10.1007/s10815-019-01542-6.
  34. Sfakianoudis K., Maziotis E., Karantzali E., Kokkini G., Grigoriadis S., Pantou A. et al. Molecular drivers of developmental arrest in the human preimplantation embryo: a systematic review and critical analysis leading to mapping future research. Int. J. Mol. Sci. 2021; 22(15): 8353. https://dx.doi.org/10.3390/ijms22158353.

Received 07.04.2023

Accepted 03.07.2023

About the Authors

Olga I. Lisitsyna, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, o_yazykova@inbox.ru, https://orcid.org/0000-0002-7775-3508, 4 Oparina str., Moscow, 117997, Russia.
Nataliya V. Dolgushina, Dr. Med. Sci., Professor, Deputy Director, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, n_dolgushina@oparina4.ru, https://orcid.org/0000-0003-1116-138X, 4 Oparina str., Moscow, 117997, Russia.
Nataliya P. Makarova, Dr. Bio. Sci., Leading Researcher of IVF Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, np_makarova@oparina4.ru, https://orcid.org/0000-0003-1396-7272, 4 Oparina str., Moscow, 117997, Russia.
Olga V. Burmenskaya, Dr. Bio. Sci., Head of the Laboratory of Oncological Genetics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, o_bourmenskaya@oparina4.ru, https://orcid.org/0000-0003-2842-3980, 4 Oparina str., Moscow, 117997, Russia.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.