Personalised medicine in action: lipidomic markers for predicting premature rupture of membranes
Baisova A.R., Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tokareva A.O., Tyutyunnik V.L.
Objective: Assessment of lipid profile in pregnant women to identify biomarkers that have prognostic potential in premature rupture of membranes (PROM).
Materials and methods: The prospective case-control study included 110 pregnant women. The group with preterm labor and PROM was comprised of 30 women, and the control group included 80 women. Plasma lipid extracts were analyzed using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Lipids were identified using LipidMatch R-script based on exact mass using the LIPID MAPS Structure Database (LMSD) and tandem mass spectrometry (MS/MS).
Results: A total of 141 maternal plasma lipids including cholesteryl esters, ceramides, monogalactosyldiacylglycerols, lysophosphatidylcholines, ether-linked phosphatidylcholines, phosphatidylinositols, phosphatidylglycerols, oxidized lipids, and triacylglycerols were detected in positive and negative ion modes. Comparative analysis of plasma in patients in the control group and in the group with premature rupture of membranes before 37 weeks of gestation showed statistically significant changes (p<0.05) in 34 lipids. Based on analysis of different expression of lipids that demonstrated statistically significant correlation with clinical data according to the Spearman’s correlation, the model was developed to predict PROM before 37 weeks of gestation with sensitivity of 97.3% and specificity of 97.4%. The area under the curve (AUC) was 0.994 and the cut-off value was 0.5.
Conclusion: Metabolomic plasma profile changes in lipids, such as ceramides, monogalactosyldiacylglycerols, lysophosphatidylcholines, ether-linked phosphatidylcholines, phosphatidylinositols, phosphatidylglycerols, oxidized lipids and triacylglycerols correlate with the risk of developing PROM. Lysophosphatidylcholines (LPC, LPE) can be considered to be early markers of proinflammatory activation. The prognostic model based on analysis of plasma lipid profile opens perspectives in the improvement of preventive measures against PROM, and also contributes to the improvement of perinatal outcomes both in mothers and newborns.
Authors' contributions: Baisova A.R. – development of the study design, obtaining data for analysis, collecting biological materials for the study, drafting the manuscript, Amiraslanov E.Yu. – development of the study design, review of publications on the topic of the article, analysis of the obtained data, writing the text of the manuscript; Chagovets V.V. – conducting metabolomic analysis using mass spectrometry, statistical analysis; Tokareva A.O. – statistical data analysis; Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tyutyunnik V.L. – manuscript editing.
Conflicts of interest: The authors confirm that they have no conflicts of interest to declare.
Funding: The study was supported by Russian Science Foundation grant No. 24-64-00006 (https://rscf.ru/project/24-64-00006/).
Ethical Approval: The study was approved by the local Ethics Committee of the Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia (Protocol No. 11 of November 11, 2021).
Patient Consent for Publication: The patients have signed informed consent for participation in the study and publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available on request from the corresponding author after approval from the principal investigator.
For citation: Baisova A.R., Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tokareva A.O., Tyutyunnik V.L. Personalised medicine in action: lipidomic markers for predicting premature rupture of membranes.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (1): 55-65 (in Russian)
https://dx.doi.org/10.18565/aig.2024.334
Keywords
References
- Menon R., Richardson L.S. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin. Perinatol. 2017; 41(7): 409-19. https://dx.doi.org/10.1053/j.semperi.2017.07.012.
- ACOG Practice Bulletin No. 188: Prelabor rupture of membranes. Obstet. Gynecol. 2018; 131(1): e1-e14. https://dx.doi.org/10.1097/AOG.0000000000002455.
- Shazly S.A., Ahmed I.A., Radwan A.A., Abd-Elkariem A.Y., El-Dien N.B., Ragab E.Y. et al.; Middle-East Obstetrics and Gynecology Graduate Education (MOGGE) Foundation Practice Group. Middle-East OBGYN Graduate Education (MOGGE) Foundation Practice Guidelines: Prelabor rupture of membranes; Practice guideline No. 01-O-19. J. Glob. Health. 2020; 10(1): 010325. https://dx.doi.org/10.7189/jogh.10.010325.
- Patel A., Sirohiwal D., Malik R., Singh P., Patel S., Gandhi K. Maternal and perinatal outcome in preterm premature rupture of membrane. Int. J. Health Sci. Res. 2016; 6(2): 89-94.
- Menon R., Behnia F., Polettini J., Richardson L.S. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin. Immunopathol. 2020; 42(4): 431-50. https://dx.doi.org/10.1007/s00281-020-00808-x.
- Баисова А.Р., Амирасланов Э.Ю., Франкевич В.Е., Чаговец В.В., Тютюнник В.Л. Современные представления об этиологии и патогенезе преждевременного разрыва плодных оболочек. Акушерство и гинекология. 2023; 10: 21-7. [Baisova A.R., Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tyutyunnik V.L. Modern concepts on the etiology and pathogenesis of premature rupture of membranes. Obstetrics and Gynecology. 2023; (10): 21-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.199.
- Tchirikov M., Schlabritz-Loutsevitch N., Maher J., Buchmann J., Naberezhnev ., Winarno A.S. et al. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Perinat. Med. 2018; 46(5): 465-88. )]. https://dx.doi.org/10.1515/jpm-2017-0027.
- Slotkowski R., VanOrmer M., Akbar A., Hahka T., Thompson M., Rapoza R. et al. Bioactive metabolites of OMEGA-6 and OMEGA-3 fatty acids are associated with inflammatory cytokine concentrations in maternal and infant plasma at the time of delivery. Clin. Nutr. ESPEN. 2024; 60: 223-33. https://dx.doi.org/10.1016/j.clnesp.2024.02.006.
- Mauro A.K., Rengarajan A., Albright C., Boeldt D.S. Fatty acids in normal and pathological pregnancies. Mol. Cell. Endocrinol. 2022; 539: 111466. https://dx.doi.org/10.1016/J.MCE.2021.111466.
- Eick S.M., Geiger S.D., Alshawabkeh A., Aung M., Barrett E.S., Bush N. et al. Urinary oxidative stress biomarkers are associated with preterm birth: an Environmental Influences on Child Health Outcomes program study. Am. J. Obstet. Gynecol. 2023; 228(5): 576.e1-576.e22. https://dx.doi.org/10.1016/j.ajog.2022.11.1282.
- Горина К.А., Ходжаева З.С., Чаговец В.В., Стародубцева Н.Л., Франкевич В.Е., Припутневич Т.В. Особенности профиля органических кислот амниотической и цервико-вагинальной жидкостей беременных высокого риска преждевременных родов. Акушерство и гинекология. 2022; 3: 39-48. [Gorina K.A., Khodzhaeva Z.S., Chagovets V.V., Starodubtseva N.L., Frankevich V.E., Priputnevich T.V. Characteristics of the organic acid profile of amniotic and cervicovaginal fluids in pregnant women at high risk for spontaneous preterm birth. Obstetrics and Gynecology. 2022; (3): 39-48. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.3.39-48.
- Yan H., Zhu L., Zhang Z., Li H., Li P., Wang Y. et al. HMGB1-RAGE signaling pathway in pPROM. Taiwan J. Obstet. Gynecol. 2018; 57(2): 211-6. https://dx.doi.org/10.1016/j.tjog.2018.02.008.
- Bredeson S., Papaconstantinou J., Deford J.H., Kechichian T., Syed T.A., Saade G.R. et al. HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One. 2014; 9(12): e113799. https://dx.doi.org/10.1371/journal.pone.0113799.
- Bouvier D., Giguère Y., Blanchon L., Bujold E., Pereira B., Bernard N. et al. Study of sRAGE, HMGB1, AGE, and S100A8/A9 concentrations in plasma and in serum-extracted extracellular vesicles of pregnant women with preterm premature rupture of membranes. Front. Physiol. 2020; 11: 609. https://dx.doi.org/10.3389/fphys.2020.00609.
- Plazyo O., Romero R., Unkel R., Balancio A., Mial T.N., Xu Y. et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol. Reprod. 2016; 95(6): 130. https://dx.doi.org/10.1095/biolreprod.116.144139.
- Prearo Moço N., Ribeiro de Andrade Ramos B., de Castro Silva M., Polettini J., Menon R., Guimarães da Silva M. Spontaneous prematurity, innate immune system, and oxidative stress at the maternal-fetal interface: an overview. In: Translational Studies on Inflammation. IntechOpen; 2020. https://dx.doi.org/10.5772/intechopen.88379.
- Oh K.J., Romero R., Park J.Y., Hong J.S., Yoon B.H. The earlier the gestational age, the greater the intensity of the intra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J. Perinat. Med. 2019; 47(5): 516-27. https://dx.doi.org/10.1515/jpm-2019-0003.
- Park C.W., Yoon B.H., Park J.S., Jun J.K. A fetal and an intra-amniotic inflammatory response is more severe in preterm labor than in preterm PROM in the context of funisitis: unexpected observation in human gestations. PLoS One. 2013; 8(5): e62521. https://dx.doi.org/10.1371/journal.pone.0062521.
- Низяева Н.В., Карапетян А.О., Гапаева М.Д., Синицына В.А., Баев О.Р. Структурные особенности плодных оболочек при преждевременных родах. Акушерство и гинекология; 2019; 8: 63-9. [Nizyaeva N.V., Karapetyan A.O., Gapaeva M.D., Sinitsyna V.A., Baev O.R. Structural features of fetal membranes in preterm labor. Obstetrics and Gynecology. 2019; (8): 63-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.8.63-69.
- Prelabor Rupture of Membranes. Obstet. Gynecol. 2020; 135(3): 739-43. https://dx.doi.org/10.1097/AOG.0000000000003701.
- Министерство здравоохранения Российской Федерации. Клинические рекомендации. Преждевременные роды. М.; 2024. 65 с. [Ministry of Health of the Russian Federation. Clinical guidelines. Preterm birth. Moscow; 2024. 65 p. (in Russian)].
- Rinschen M.M., Ivanisevic J., Giera M., Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell. Biol. 2019; 20(6): 353-67. https://dx.doi.org/10.1038/s41580-019-0108-4.
- Romero R., Mazaki-Tovi S., Vaisbuch E., Kusanovic J.P., Chaiworapongsa T., Gomez R. et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J. Matern. Fetal Neonatal. Med. 2010; 23(12): 1344-59. https://dx.doi.org/10.3109/14767058.2010.482618.
- Dharuri H., Demirkan A., van Klinken J.B., Mook-Kanamori D.O., van Duijn C.M., 't Hoen P.A. et al. Genetics of the human metabolome, what is next? Biochim. Biophys. Acta. 2014; 1842(10): 1923-31. https://dx.doi.org/10.1016/j.bbadis.2014.05.030.
- Fanos V., Atzori L., Makarenko K., Melis G.B., Ferrazzi E. Metabolomics application in maternal-fetal medicine. Biomed. Res. Int. 2013; 2013: 720514. https://dx.doi.org/10.1155/2013/720514.
- Putri S.P., Nakayama Y., Matsuda F., Uchikata T., Kobayashi S., Matsubara A. et al. Current metabolomics: Practical applications. J. Biosci. Bioeng. 2013; 115(6): 579-89. https://dx.doi.org/10.1016/j.jbiosc.2012.12.007.
- Rayburn W.F. Premature rupture of membranes: the most common factor leading to preterm birth. Obstet. Gynecol. Clin. North Am. 2020; 47(4): xi-xii. https://dx.doi.org/10.1016/j.ogc.2020.09.003.
- Brown R.G., Al-Memar M., Marchesi J.R., Lee Y.S., Smith A., Chan D. et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl. Res. 2019; 207: 30-43. https://dx.doi.org/10.1016/j.trsl.2018.12.005.
- Castro D., Norwitz E.R. Preterm premature rupture of membranes. Obstet. Gynecol. Online first. 2021. https://dx.doi.org/10.2310/OBG.19056.
- Yang K., Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 2016; 41(11): 954-69. https://dx.doi.org/10.1016/j.tibs.2016.08.010.
- Aung M.T., Ashrap P., Watkins D.J., Mukherjee B., Rosario Z., Vélez-Vega C.M. et al. Maternal lipidomic signatures in relation to spontaneous preterm birth and large-for-gestational age neonates. Sci. Rep. 2021; 11(1): 8115. https://dx.doi.org/10.1038/s41598-021-87472-9.
- Grzelczyk A., Gendaszewska-Darmach E. Novel bioactive glycerol-based lysophospholipids: New data – New insight into their function. Biochimie. 2013; 95(4): 667-79. https://dx.doi.org/10.1016/j.biochi.2012.10.009.
- Makide K., Kitamura H., Sato Y., Okutani M., Aoki J. Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 2009; 89(3-4): 135-9. https://dx.doi.org/10.1016/j.prostaglandins.2009.04.009.
- Hong S.H., Lee J.Y., Seo S., Shin B., Jeong C.H., Bae E. et al. Lipidomic analysis of cervicovaginal fluid for elucidating prognostic biomarkers and relevant phospholipid and sphingolipid pathways in preterm birth. Metabolites. 2023; 13(2): 177. https://dx.doi.org/10.3390/metabo13020177.
- Zhao Q., Ma Z., Wang X., Liang M., Wang W., Su F. et al. Lipidomic biomarkers of extracellular vesicles for the prediction of preterm birth in the early second trimester. J. Proteome Res. 2020; 19(10): 4104-13. https://dx.doi.org/10.1021/acs.jproteome.0c00525.
- Morillon A.C., Yakkundi S., Thomas G., Gethings L.A., Langridge J.I., Baker P.N. et al. Association between phospholipid metabolism in plasma and spontaneous preterm birth: a discovery lipidomic analysis in the cork pregnancy cohort. Metabolomics. 2020; 16(2): 19. https://dx.doi.org/10.1007/s11306-020-1639-6.
Received 27.12.2024
Accepted 21.01.2025
About the Authors
Almira R. Baisova, PhD student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, almira.baisova@mail.ru, https://orcid.org/0009-0004-4546-2388Elrad Yu. Amiraslanov, PhD, Head of the Department of Obstetrics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, eldis@mail.ru, https://orcid.org/0000-0001-5601-1241
Vladimir E Frankevich, Dr. Sci. (in Physics and Mathematics), Head of Department of Systems Biology in Reproduction, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4; Leading Researcher at the Laboratory
of Translational Medicine, Siberian State Medical University, Ministry of Health of Russia, 634050, Russia, Tomsk, Moskovsky tract, 2, v_frankevich@oparina4.ru,
https://orcid.org/0000-0002-9780-4579
Vitaliy V. Chagovets, PhD, Senior Researcher at the Proteomics of Human Reproduction Department, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, v_chagovets@oparina4.ru,
https://orcid.org/0000-0002-5120-376X
Alisa O. Tokareva, PhD, Specialist at the Laboratory of Clinical Proteomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, alisa.tokareva@phystech.edu, https://orcid.org/0000-0001-5918-9045
Victor L. Tyutyunnik, Professor, Dr. Med. Sci., Leading Researcher at the Center for Scientific and Clinical Research, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, tioutiounnik@mail.ru,
Researcher ID: B-2364-2015, SPIN: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099