Ovarian reserve

Kozachenko I.F., Goryachev A.A., Amintaeva U.D.

1) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia

The human body is greatly influenced by many different pathogenic factors in the external and internal environment throughout the human life. External environmental factors are those that act on the body from the outside, including nature’s polluting chemicals and physical influences. Internal environment factors refer to genetic/epigenetic abnormalities (monogenic mutations, chromosomal aberrations, disorder of methylation of nucleic acid molecules), malignant tumors and many other factors. Their primary effects may be initially asymptomatic, but patients may gradually develop clinical manifestations. Some of these factors can lead to organic and/or functional disorders of the female reproductive system, compromising the ovarian reserve (OR) status. OR is a pool of primordial follicles in the ovaries that determines the functional state of the reproductive system. This is the most important quantitative and qualitative indicator of physiological activity of the female reproductive system. Therefore, pathogenic factors affecting the body increase the chance of reproductive dysfunction (reduced fertility) and early infertility. This review discusses the various factors that directly or indirectly affect the reproductive organs and influence the fertility potential of the female body, as well as ways to treat reduced OR today.
Conclusion: The preservation, restoration and prevention of OR decline have now become significant issues in the field of women’s reproductive health. The control of external and internal factors of gonad damage and timely detection of fertility disorders are priorities. This type of support system for women’s health should increase the likelihood of protection of the reproductive system and improve the targeting of etiopathogenetic therapies for the defects; fertility could be preserved and prolonged until the natural menopausal period.

Authors’ contributions: Goryachev A.A., Amintaeva U.D. – collecting and processing the material, writing the text; Kozachenko I.F. – developing the plan of the article, editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was carried without sponsorship.
For citation: Kozachenko I.F., Goryachev A.A., Amintaeva U.D. Ovarian reserve.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (4): 36-43 (in Russian)
https://dx.doi.org/10.18565/aig.2025.52

Keywords

ovarian reserve
restoring fertility
reproductive age
genetics

References

  1. Man L., Lustgarten Guahmich N., Vyas N., Tsai S., Arazi L., Lilienthal D. et al. Ovarian reserve disorders, can we prevent them? A review. Int. J. Mol. Sci. 2022; 23(23): 15426. https://dx.doi.org/10.3390/ijms232315426.
  2. Дементьева В.О., Адамян Л.В., Смольникова В.Ю., Тоноян Н.М. Сниженный овариальный резерв и преждевременная недостаточность яичников: современный взгляд на проблему диагностики, комплексного лечения и восстановления репродуктивной функции (собственные данные). Проблемы репродукции. 2022; 28(4): 128 36. [Dementyeva V.O., Adamyan L.V., Smolnikova V.Yu., Tonoyan N.M. Diminished ovarian reserve and premature ovarian insufficiency: a modern view on the problem of diagnosis, complex treatment and recovery of reproductive function, own data. Russian Journal of Human Reproduction. 2022; 28(4): 128-36. (in Russian)]. https://dx.doi.org/10.17116/repro202228041128.
  3. Kawashima Y., Oda A.H., Hikida Y., Ohta K. Chromosome-dependent aneuploid formation in Spo11-less meiosis. Genes Cells. 2023; 28(2): 129-48. https://dx.doi.org/10.1111/gtc.12998.
  4. Wang H., Zhong C., Yang R., Yin Y., Tan R., Gao L. et al. Hfm1 participates in Golgi-associated spindle assembly and division in mouse oocyte meiosis. Cell Death Dis. 2020; 11(6): 490. https://dx.doi.org/10.1038/s41419-020-2697-4.
  5. Liu M.N., Zhang K., Xu T.M. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency. Hum. Fertil. (Camb.). 2021; 24(5): 325-32. https://dx.doi.org/10.1080/14647273.2019.1672107.
  6. Oliveira J., Petersen C., Mauri A., Vagnini L., Renzi A., Petersen B. et al. TP53 gene (rs1625895) C>T polymorphism is associated with ovarian reserve and ovarian response to recombinant FSH during IVF/ICSI treatment. Fertil. Steril. 2019; 112: e17-e18. https://dx.doi.org/10.1016/j.fertnstert.2019.07.179.
  7. Kasapoğlu I., Seli E. Mitochondrial dysfunction and ovarian aging. Endocrinology. 2020; 161(2): bqaa001. https://dx.doi.org/10.1210/endocr/bqaa001.
  8. Боярский К.Ю., Гоготадзе И.Н. Возможности реализации репродуктивной функции при синдроме Шерешевского–Тернера. Проблемы репродукции. 2020; 26(2): 34-40. [Boyarsky K.Yu., Gogotadze I.N. Possibilities of reproductive function realization in Turner syndrome. Russian Journal of Human Reproduction. 2020; 26(2): 34-40. (in Russian)]. https://dx.doi.org/10.17116/repro20202602134.
  9. Адамян Л.В., Кузнецова М.В., Павлова Н.С., Трофимов Д.Ю., Пивазян Л.Г., Джаруллаева З.У., Антонова А.А. Генетические аспекты преждевременной недостаточности яичников и «бедного ответа»: современный взгляд на проблему. Проблемы репродукции. 2023; 29(4-2): 6-13. [Adamyan L.V., Kuznetsova M.V., Pavlova N.S., Trofimov D.Yu., Pivazyan L.G., Dzharullaeva Z.U., Antonova A.A. Genetic aspects of POI and «poor response»: a modern view of the problem. Russian Journal of Human Reproduction. 2023; 29(4-2): 6-13. (in Russian)]. https://dx.doi.org/10.17116/repro2023290426.
  10. Hu M., Yeh Y.H., Munakata Y., Abe H., Sakashita A., Maezawa S. et al. PRC1-mediated epigenetic programming is required to generate the ovarian reserve. Nat. Commun. 2022; 13(1): 4510. https://dx.doi.org/10.1038/s41467-022-31759-6.
  11. Bernabeu R., Ortiz J.A., Lledó B. Exploring the epigenetic profile of women with poor ovarian reserve. Fertil. Steril. 2021; 115(3): 599-600. https://dx.doi.org/10.1016/j.fertnstert.2020.12.023.
  12. Hu M., Schultz R.M., Namekawa S.H. Epigenetic programming in the ovarian reserve. Bioessays. 2023; 45(10): e2300069. https://dx.doi.org/10.1002/bies.202300069.
  13. Segal T.R., Giudice L.C. Before the beginning: environmental exposures and reproductive and obstetrical outcomes. Fertil. Steril. 2019; 112(4): 613-21. https://dx.doi.org/10.1016/j.fertnstert.2019.08.001.
  14. Björvang R.D., Hassan J., Stefopoulou M., Gemzell-Danielsson K., Pedrelli M., Kiviranta H. et al. Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. Environ. Int. 2021; 155: 106589. https://dx.doi.org/10.1016/j.envint.2021.106589.
  15. Ding T., Yan W., Zhou T., Shen W., Wang T., Li M. et al. Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence. Environ. Pollut. 2022; 305: 119269. https://dx.doi.org/10.1016/j.envpol.2022.119269.
  16. Ding N., Harlow S.D., Randolph J.F. Jr., Loch-Caruso R., Park S.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Update. 2020; 26(5): 724-52. https://dx.doi.org/10.1093/humupd/dmaa018.
  17. Kahn L.G., Philippat C., Nakayama S.F., Slama R., Trasande L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 2020; 8(8): 703-18. https://dx.doi.org/10.1016/S2213-8587(20)30129-7.
  18. Huang J., Zeng H. The influence of environmental factors on ovarian function, follicular genesis, and oocyte quality. Adv. Exp. Med. Biol. 2021; 1300: 41-62. https://dx.doi.org/10.1007/978-981-33-4187-6_3.
  19. Karwacka A., Zamkowska D., Radwan M., Jurewicz J. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Hum. Fertil. (Camb.). 2019; 22(1): 2-25. https://dx.doi.org/10.1080/14647273.2017.1358828.
  20. Wu M., Zhu Q., Huang Y., Tang W., Dai J., Guo Y. et al. Ovarian reserve in reproductive-aged patients with cancer before gonadotoxic treatment: a systematic review and meta-analysis. Hum. Reprod. Open. 2023; 2023(3): hoad024. https://dx.doi.org/10.1093/hropen/hoad024.
  21. Porcu E., Cillo G.M., Cipriani L., Sacilotto F., Notarangelo L., Damiano G. et al. Impact of BRCA1 and BRCA2 mutations on ovarian reserve and fertility preservation outcomes in young women with breast cancer. J. Assist. Reprod. Genet. 2020; 37(3): 709-15. https://dx.doi.org/10.1007/s10815-019-01658-9.
  22. Anderson R.A., Cameron D., Clatot F., Demeestere I., Lambertini M., Nelson S.M. et al. Anti-Müllerian hormone as a marker of ovarian reserve and premature ovarian insufficiency in children and women with cancer: a systematic review. Hum. Reprod. Update. 2022; 28(3): 417-34. https://dx.doi.org/10.1093/humupd/dmac004.
  23. Kuokkanen S., Polotsky A.J., Chosich J., Bradford A.P., Jasinska A., Phang T. et al. Corpus luteum as a novel target of weight changes that contribute to impaired female reproductive physiology and function. Syst. Biol. Reprod. Med. 2016; 62(4): 227-42. https://dx.doi.org/10.3109/19396368.2016.1173743.
  24. Valsamakis G., Chrousos G., Mastorakos G. Stress, female reproduction and pregnancy. Psychoneuroendocrinology. 2019; 100: 48-57. https://dx.doi.org/10.1016/j.psyneuen.2018.09.031.
  25. Turan V., Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum. Reprod. Update. 2020; 26(1): 43-57. https://dx.doi.org/10.1093/humupd/dmz043.
  26. Paradisi R., Macciocca M., Vicenti R., Rossi S., Morselli-Labate A.M., Mastroroberto M. et al. New insights in the selection and management of cancer patients applicants for ovarian tissue cryopreservation. Gynecol. Endocrinol. 2016; 32(11): 881-5. https://dx.doi.org/10.1080/09513590.2016.1188373.
  27. Вартанян Э.В., Доброхотова Ю.Э., Девятова Е.А., Цатурова К.А. Сохранение женской фертильности при онкологических заболеваниях. Проблемы репродукции. 2020; 26(4): 68 76. [Vartanyan E.V., Dobrokhotova Yu.E., Devyatova E.A., Tsaturova K.A. Females’ fertility preservation in malignancies. Russian Journal of Human Reproduction. 2020; 26(4): 68-76. (in Russian)]. https://dx.doi.org/10.17116/repro20202604168.
  28. Kadiroğulları P., Demir E., Bahat P.Y., Kıyak H., Seckin K.D. Evaluation of relationship between HbA1c levels and ovarian reserve in patients with type 1 diabetes mellitus. Gynecol. Endocrinol. 2020; 36(5): 426-30. https://dx.doi.org/10.1080/09513590.2019.1708893.
  29. Yarde F., Spiering W., Franx A., Visseren F.L., Eijkemans M.J., de Valk H.W. et al.; OVADIA Study Group. Association between vascular health and ovarian ageing in type 1 diabetes mellitus. Hum. Reprod. 2016; 31(6): 1354-62. https://dx.doi.org/10.1093/humrep/dew063.
  30. Pala H.G., Pala E.E., Artunc Ulkumen B., Erbas O. Protective effects of dichloroacetic acid on endometrial injury and ovarian reserve in an experimental rat model of diabetes mellitus. J. Obstet. Gynaecol. Res. 2021; 47(12): 4319-28. https://dx.doi.org/10.1111/jog.15045.
  31. Зайдиева Я.З., Рифатова А.В. Акромегалия у женщин: взгляд гинеколога. Российский вестник акушера-гинеколога. 2014; 14(3): 38 42. [Zaidieva Ya.Z., Rifatova A.V. Acromegaly in women: A gynecologist’s opinion. Russian Bulletin of Obstetrician-Gynecologist. 2014; 14(3): 38-42. (in Russian)].
  32. Pirchio R., Auriemma R.S., Grasso L.F.S., Verde N., Garifalos F., Castoro M. et al. Fertility in acromegaly: a single-center experience of female patients during active disease and after disease remission. J. Clin. Endocrinol. Metab. 2023; 108(8): e583-e593. https://dx.doi.org/10.1210/clinem/dgad042.
  33. Concepción-Zavaleta M.J., Coronado-Arroyo J.C., Quiroz-Aldave J.E., Durand-Vásquez M.D.C., Ildefonso-Najarro S.P., Rafael-Robles L.D.P. et al. Endocrine factors associated with infertility in women: an updated review. Expert Rev. Endocrinol. Metab. 2023; 18(5): 399-417. https://dx.doi.org/10.1080/17446651.2023.2256405
  34. Машаева Р.И., Марченко Л.А., Гус А.И., Костюков К.В. Овариальный возраст – ранний маркер преждевременной недостаточности яичников. Акушерство и гинекология. 2025; 3: 120-127. [Mashaeva R.I., Marchenko L.A., Gus A.I., Kostyukov K.V. Ovarian age – an early marker of premature ovarian insufficiency. Obstetrics and Gynecology. 2025; (3): 120-7 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.271.
  35. Park S.U., Walsh L., Berkowitz K.M. Mechanisms of ovarian aging. Reproduction. 2021; 162(2): R19-R33. https://dx.doi.org/10.1530/REP-21-0022.
  36. Долгушина Н.В., Адамян Л.В., Шешко Е.Л. Поздний репродуктивный возраст женщины: риски нарушения репродуктивной функции (обзор литературы). Проблемы репродукции. 2023; 29(4): 99-106. [Dolgushina N.V., Adamyan L.V., Sheshko E.L. Late reproductive age of a woman: risks of reproductive dysfunction (literature review). Russian Journal of Human Reproduction. 2023; 29(4): 99-106. (in Russian)]. https://dx.doi.org/10.17116/repro20232904199.
  37. Ata B., Seyhan A., Seli E. Diminished ovarian reserve versus ovarian aging: overlaps and differences. Curr. Opin. Obstet. Gynecol. 2019; 31(3): 139-47. https://dx.doi.org/10.1097/GCO.0000000000000536.
  38. Romanski P.A., Bortoletto P., Rosenwaks Z., Schattman G.L. Delay in IVF treatment up to 180 days does not affect pregnancy outcomes in women with diminished ovarian reserve. Hum. Reprod. 2020; 35(7): 1630-6. https://dx.doi.org/10.1093/humrep/deaa137.
  39. Morin S.J., Patounakis G., Juneau C.R., Neal S.A., Scott R.T., Seli E. Diminished ovarian reserve and poor response to stimulation in patients <38 years old: a quantitative but not qualitative reduction in performance. Hum. Reprod. 2018; 33(8): 1489-98. https://dx.doi.org/10.1093/humrep/dey238.
  40. Jaswa E.G., McCulloch C.E., Simbulan R., Cedars M.I., Rosen M.P. Diminished ovarian reserve is associated with reduced euploid rates via preimplantation genetic testing for aneuploidy independently from age: evidence for concomitant reduction in oocyte quality with quantity. Fertil. Steril. 2021; 115(4): 966-73. https://dx.doi.org/10.1016/j.fertnstert.2020.10.051.
  41. Younis J.S., Iskander R., Fauser B.C.J.M., Izhaki I. Does an association exist between menstrual cycle length within the normal range and ovarian reserve biomarkers during the reproductive years? A systematic review and meta-analysis. Hum. Reprod. Update. 2020; 26(6): 904-28. https://dx.doi.org/10.1093/humupd/dmaa013.
  42. Panda S.R., Sachan S., Hota S. A systematic review evaluating the efficacy of intra-ovarian infusion of autologous platelet-rich plasma in patients with poor ovarian reserve or ovarian insufficiency. Cureus. 2020; 12(12): e12037. https://dx.doi.org/10.7759/cureus.12037.
  43. Bos-Mikich A., Ferreira M.O., de Oliveira R., Frantz N. Platelet-rich plasma or blood-derived products to improve endometrial receptivity? J. Assist. Reprod. Genet. 2019; 36(4): 613-20. https://dx.doi.org/10.1007/s10815-018-1386-z.
  44. Samadi P., Sheykhhasan M., Khoshinani H.M. The use of platelet-rich plasma in aesthetic and regenerative medicine: a comprehensive review. Aesthetic Plast. Surg. 2019; 43(3): 803-14. https://dx.doi.org/10.1007/s00266-018-1293-9.
  45. Dawood A., Salem H. Current clinical applications of platelet-rich plasma in various gynecological disorders: an appraisal of theory and practice. Clin. Exp. Reprod. Med. 2018; 45(2): 67-74. https://dx.doi.org/10.5653/cerm.2018.45.2.67.
  46. Sharara F.I., Lelea L.L., Rahman S., Klebanoff J.S., Moawad G.N. A narrative review of platelet-rich plasma (PRP) in reproductive medicine. J. Assist. Reprod. Genet. 2021; 38(5): 1003-12. https://dx.doi.org/10.1007/s10815-021-02146-9.
  47. Sfakianoudis K., Simopoulou M., Grigoriadis S., Pantou A., Tsioulou P., Maziotis E. et al. Reactivating ovarian function through autologous platelet-rich plasma intraovarian infusion: pilot data on premature ovarian insufficiency, perimenopausal, menopausal, and poor responder women. J. Clin. Med. 2020; 9(6): 1809. https://dx.doi.org/10.3390/jcm9061809.
  48. Адамян Л.В., Антонова А.А., Пивазян Л.Г., Крылова Е.И. Роль применения плазмы, обогащенной тромбоцитами, в репродуктивной медицине. Проблемы репродукции. 2023; 29(3): 25-30. [Adamyan L.V., Antonova A.A., Pivazyan L.G., Krylova E.I. The role of the use of platelet-rich plasma in reproductive medicine. Russian Journal of Human Reproduction. 2023; 29(3): 25-30. (in Russian)]. https://dx.doi.org/10.17116/repro20232903125.
  49. Hosseinisadat R., Farsi Nejad A., Mohammadi F. Intra-ovarian infusion of autologous platelet-rich plasma in women with poor ovarian reserve: A before and after study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023; 280: 60-3. https://dx.doi.org/10.1016/j.ejogrb.2022.11.001.
  50. Zhang C. The roles of different stem cells in premature ovarian failure. Curr. Stem Cell Res. Ther. 2020; 15(6): 473-81. https://dx.doi.org/10.2174/1574888X14666190314123006.
  51. Herraiz S., Pellicer N., Romeu M., Pellicer A. Treatment potential of bone marrow-derived stem cells in women with diminished ovarian reserves and premature ovarian failure. Curr. Opin. Obstet. Gynecol. 2019; 31(3): 156-62. https://dx.doi.org/10.1097/GCO.0000000000000531.
  52. Wang S., Yu L., Sun M., Mu S., Wang C., Wang D. et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed. Res. Int. 2013; 2013: 690491. https://dx.doi.org/10.1155/2013/690491.
  53. Deng T., He J., Yao Q., Wu L., Xue L., Wu M. et al. Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism. Reprod. Sci. 2021; 28(6): 1718-32. https://dx.doi.org/10.1007/s43032-021-00499-1.
  54. Liu J., Zhang H., Zhang Y., Li N., Wen Y., Cao F. et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol. Cells. 2014; 37(12): 865-72. https://dx.doi.org/10.14348/molcells.2014.0145.
  55. Ghahremani-Nasab M., Ghanbari E., Jahanbani Y., Mehdizadeh A., Yousefi M. Premature ovarian failure and tissue engineering. J. Cell Physiol. 2020; 235(5): 4217-26. https://dx.doi.org/10.1002/jcp.29376.
  56. Ali I., Padhiar A.A., Wang T., He L., Chen M., Wu S. et al. Stem cell-based therapeutic strategies for premature ovarian insufficiency and infertility: a focus on aging. Cells. 2022; 11(23): 3713. https://dx.doi.org/10.3390/cells11233713.
  57. Адамян Л.В., Сибирская Е.В., Щерина А.В. Патогенетические аспекты преждевременной недостаточности яичников. Проблемы репродукции. 2021; 27(1): 6-12. [Adamyan L.V., Sibirskaya E.V., Shcherina A.V. Pathogenetic aspects of premature ovarian failure. Russian Journal of Human Reproduction. 2021; 27(1): 6-12. (in Russian)]. https://dx.doi.org/10.17116/repro2021270116.
  58. Fàbregues F., Ferreri J., Méndez M., Calafell J.M., Otero J., Farré R. In vitro follicular activation and stem cell therapy as a novel treatment strategies in diminished ovarian reserve and primary ovarian insufficiency. Front. Endocrinol. (Lausanne). 2021; 11: 617704. https://dx.doi.org/10.3389/fendo.2020.617704.
  59. Kawamura K., Ishizuka B., Hsueh A.J.W. Drug-free in-vitro activation of follicles for infertility treatment in poor ovarian response patients with decreased ovarian reserve. Reprod. Biomed. Online. 2020; 40(2): 245-53. https://dx.doi.org/10.1016/j.rbmo.2019.09.007.
  60. Адамян Л.В., Дементьева В.О., Асатурова А.В. Комплексное лечение преждевременной недостаточности яичников с использованием хирургических технологий. Критерии отбора пациенток: собственный опыт на основании ведения более 100 больных. Проблемы репродукции. 2022; 28(4): 106 14. [Adamyan L.V., Dementyeva V.O., Asaturova A.V. Complex treatment of premature ovarian failure using surgical technologies. Criteria for selection of patients: own experience based on more than 100 patients. Russian Journal of Human Reproduction. 2022; 28(4): 106-14. (in Russian)]. https://dx.doi.org/10.17116/repro202228041106.
  61. Khattak H., Malhas R., Craciunas L., Afifi Y., Amorim C.A., Fishel S. et al. Fresh and cryopreserved ovarian tissue transplantation for preserving reproductive and endocrine function: a systematic review and individual patient data meta-analysis. Hum. Reprod. Update. 2022; 28(3): 400-16. https://dx.doi.org/10.1093/humupd/dmac003.
  62. Пшениснова И.В., Яковлев П.П. Андрогеновый прайминг при бедном ответе на овариальную стимуляцию. Акушерство и гинекология. 2023; 8: 22-9. [Pshenisnova I.V., Yakovlev P.P. Androgen priming in a poor ovarian stimulation response. Obstetrics and Gynecology. 2023; (8): 22-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.109.
  63. Martirosyan Y.O., Silachev D.N., Nazarenko T.A., Birukova A.M., Vishnyakova P.A., Sukhikh G.T. Stem-cell-derived extracellular vesicles: unlocking new possibilities for treating diminished ovarian reserve and premature ovarian insufficiency. Life (Basel). 2023; 13(12): 2247. https://dx.doi.org/10.3390/life13122247.

Received 28.02.2025

Accepted 22.04.2025

About the Authors

Irena F. Kozachenko, Dr. Med. Sci., Leading Researcher, obstetrician-gynecologist, Gynecological Department, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, irenakozachenko@rambler.ru,
https://orcid.org/0000-0003-1822-9164
Alexsander A. Goryachev, 5th year student, N.I. Pirogov Russian National Research University, Ministry of Health of Russia, 117513, Russia, Moscow, Ostrovityanov str, 1, +7(916)995-50-37, alexgoryachev2022@mail.ru, https://orcid.org/0009-0003-0221-3050
Ummusalimat D. Amintaeva, PhD student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, amintaeva_umm@mail.ru, https://orcid.org/0009-0008-6984-7193
Corresponding author: Alexsander A. Goryachev, alexgoryachev2022@mail.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.