Clinical use of expanded genetic testing in the management of couples with unexplained infertility
Martirosyan Ya.O., Kadaeva A.I., Bolshakova A.S., Nazarenko T.A., Biryukova A.M., Askeralieva A.N.
Objective: To clarify the proportion of unexplained infertility within the overall structure of infertility and analyze the clinical, embryologic, and genetic characteristics of patients with unexplained infertility (UI).
Materials and methods: Patients were selected from couples referred for IVF/ICSI programs. In the retrospective phase of the study, clinical and medical history data were analyzed from 1,500 married couples who underwent 2,156 stimulated cycles from 2020 to 2022 at V.I. Kulakov NMRC for OG&P. The observation group consisted of 156 married couples diagnosed with unexplained infertility, who were referred for IVF.
Results: Of the total number of patients included in the study, 10.4% were diagnosed with unexplained infertility. The cause of infertility was established in 89.6% of the couples. Patients with UI had a longer duration of infertility (on average 4.3 (1.2) years) compared to patients with an established cause of infertility (3.2 (2.4) years), with a statistically significant difference (p<0.001, Student's t-test). Patients with UI also exhibited lower AMH levels and lower antral follicle counts compared to the control group: mean levels were 2.6 (0.46) and 13.3 (2.9), respectively, versus 3.61 (2.04) and 14.2 (4.0) (p<0.001 and p=0.004, Mann–Whitney U-test). The number of oocytes retrieved by transvaginal ovarian puncture was similar in both the groups. Comparison of the parameters of subsequent embryological stages showed that all patients with UI had significantly reduced parameters compared to those in the group with an established cause of infertility: mature oocytes were 33.3% lower, correctly fertilized oocytes were 45.5% lower, and the number of embryos (blastocysts) available for transfer was 82.2% lower. Patients with UI who did not have blastocysts retrieved on day 5 of culture underwent genetic testing, which revealed genetic variants potentially linked to IVF failure.
Conclusion: Identifying the specific genetic determinants of female infertility enables a definitive diagnosis for couples, allowing them to consider alternative ART options. It also provides an opportunity to identify molecular factors and biological pathways involved in the acquisition of oocyte competence.
Authors' contributions: Martirosyan Ya.O., Kadayeva A.I., Bolshakova A.S., Nazarenko T.A., Biryukova A.M., Askeralieva A.N. – conception and design of the study, obtaining data for analysis, review of relevant publications, obtained data analysis, drafting of the manuscript.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: Source of funding: R&D 121040600410-7 Nazarenko T.A. “Solving the problem of infertility in modern conditions by developing a clinical and diagnostic model of infertile marriage and using innovative technologies in assisted reproduction programs.”
Ethical Approval: The study was reviewed and approved by the Research Ethics Committee of the V.I. Kulakov NMRC for OG&P.
Patient Consent for Publication: All patients provided informed consent for the publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available upon request from the corresponding author after approval from the principal investigator.
For citation: Martirosyan Ya.O., Kadaeva A.I., Bolshakova A.S., Nazarenko T.A., Biryukova A.M., Askeralieva A.N. Clinical use of expanded genetic testing in the management of couples with unexplained infertility.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (12): 50-58 (in Russian)
https://dx.doi.org/10.18565/aig.2024.274
Keywords
References
- Киракосян Е.В., Назаренко Т.А., Бачурин А.В., Павлович С.В. Клиническая характеристика и эмбриологические показатели программ экстракорпорального оплодотворения у женщин с бесплодием неясного генеза. Акушерство и гинекология. 2022; 5: 83-90. [Kirakosyan E.V., Nazarenko T.A., Bachurin A.V., Pavlovich S.V. Clinical characteristics and embryological parameters in IVF programs for women with unexplained infertility. Obstetrics and Gynecology. 2022; (5): 83-90 (in Russian)]. https://dx.doi.org/10.18565/aig.2022.5.83-90.
- Бачурин А.В., Киракосян Е.В., Назаренко Т.А., Павлович С.В. Анализ эмбриологического этапа программ экстракорпорального оплодотворения у пациентов с бесплодием неясного генеза. Акушерство и гинекология. 2022; 9: 81-6. [Bachurin A.V., Kirakosyan E.V., Nazarenko N.A., Pavlovich S.V. Analysis of the embryonic stage of in vitro fertilization programs in patients with unexplained infertility. Obstetrics and Gynecology. 2022; (9): 81-6 (in Russian)]. https://dx.doi.org/10.18565/aig.2022.9.81-86.
- Мартиросян Я.О., Назаренко Т.А., Кадаева А.И., Краснова В.Г., Бирюкова А.М., Погосян М.Т. Новые подходы к изучению регуляции преимплантационного развития эмбрионов. Акушерство и гинекология. 2023; 6: 29-37. [Martirosyan Ya.O., Nazarenko T.A., Kadaeva A.I., Krasnova V.G., Biryukova A.M., Pogosyan M.T. New approaches to studying the regulation of preimplantation embryonic development. Obstetrics and Gynecology. 2023; (6): 29-37 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.10.
- Green R.C., Berg J.S., Grody W.W., Kalia S.S., Korf B.R., Martin C.L. et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013; 15(7): 565-74. https://dx.doi.org/10.1038/gim.2013.73.
- Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18(2): 3-23. [Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Rebrikov D.V., Savostianov K.V., Glotov A.S., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Medical Genetics. 2019; 18(2): 3-23. (in Russian)]. https://dx.doi.org/10.25557/2073-7998.2019.02.3-23.
- Nykamp K., Anderson M., Powers M., Garcia J., Herrera B., Ho Y.Y. et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 2017; 19(10): 1105-17. https://dx.doi.org/10.1038/gim.2017.37.
- McGurk K.A., Zheng S.L., Henry A., Josephs K., Edwards M., de Marvao A. et al. Correspondence on “ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG)” by Miller et al. Genet. Med. 2022; 24(3): 744-6. https://dx.doi.org/10.1016/j.gim.2021.10.020.
- Chen L., Hadd A., Sah S., Filipovic-Sadic S., Krosting J., Sekinger E. et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J. Mol. Diagn. 2010; 12(5): 589-600. https://dx.doi.org/10.2353/jmoldx.2010.090227.
- Amos Wilson J., Pratt V.M., Phansalkar A., Muralidharan K., Highsmith W.E. Jr., Beck J.C. et al.; Fragile Xperts Working Group of the Association for Molecular Pathology Clinical Practice Committee. Consensus characterization of 16 FMR1 reference materials: a consortium study. J. Mol. Diagn. 2008; 10(1): 2-12. https://dx.doi.org/10.2353/jmoldx.2008.070105.
- Saluto A., Brussino A., Tassone F., Arduino C., Cagnoli C., Pappi P. et al. An enhanced polymerase chain reaction assay to detect pre- and full mutation alleles of the fragile X mental retardation 1 gene. J. Mol. Diagn. 2005; 7(5): 605-12. https://dx.doi.org/10.1016/S1525-1578(10)60594-6.
- Grasmane A., Rots D., Vitina Z., Magomedova V., Gailite L. The association of FMR1 gene (CGG)n variation with idiopathic female infertility. Arch. Med. Sci. 2019; 17(5): 1303-7. https://dx.doi.org/10.5114/aoms.2019.85154.
- Rehnitz J., Alcoba D.D., Brum I.S., Dietrich J.E., Youness B., Hinderhofer K. et al. FMR1 expression in human granulosa cells increases with exon 1 CGG repeat length depending on ovarian reserve. Reprod. Biol. Endocrinol. 2018; 16(1): 65. https://dx.doi.org/10.1186/s12958-018-0383-5.
- Nowaczyk M.J., Waye J.S., Douketis J.D. DHCR7 mutation carrier rates and prevalence of the RSH/Smith-Lemli-Opitz syndrome: where are the patients? Am. J. Med. Genet. A. 2006; 140(19): 2057-62. https://dx.doi.org/10.1002/ajmg.a.31413.
- Gruhn J.R., Zielinska A.P., Shukla V., Blanshard R., Capalbo A., Cimadomo D. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 2019; 365(6460): 1466-9. https://dx.doi.org/10.1126/science.aav7321.
- Capalbo A., Hoffmann E.R., Cimadomo D., Ubaldi F.M., Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum. Reprod. Update. 2017; 23(6): 706-22. https://dx.doi.org/10.1093/humupd/dmx026.
- Franasiak J.M., Forman E.J., Hong K.H., Werner M.D., Upham K.M., Treff N.R. et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-663.e1. https://dx.doi.org/10.1016/j.fertnstert.2013.11.004.
- McCoy R.C., Demko Z.P., Ryan A., Banjevic M., Hill M., Sigurjonsson S. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLOS Genet. 2015; 11(10): e1005601. https://dx.doi.org/10.1371/journal.pgen.1005601.
- Faridi R., Rehman A.U., Morell R.J., Friedman P.L., Demain L., Zahra S. et al. Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Clin. Genet. 2017; 91(2): 328-32. https://dx.doi.org/10.1111/cge.12867.
- Caburet S., Arboleda V.A., Llano E., Overbeek P.A., Barbero J.L., Oka K. et al. Mutant cohesin in premature ovarian failure. N. Engl. J. Med. 2014; 370(10): 943-9. https://dx.doi.org/10.1056/NEJMoa1309635.
- Maddirevula S., Coskun S., Alhassan S., Elnour A., Alsaif H.S., Ibrahim N. et al. Female infertility caused by mutations in the oocyte-specific translational repressor PATL2. Am. J. Hum. Genet. 2017; 101(4): 603-8. https://dx.doi.org/10.1016/j.ajhg.2017.08.009.
- Chen B., Zhang Z., Sun X., Kuang Y., Mao X., Wang X. et al. Biallelic mutations in PATL2 cause female infertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2017; 101(4): 609-15. https://dx.doi.org/10.1016/j.ajhg.2017.08.018.
- Feng R., Yan Z., Li B., Yu M., Sang Q., Tian G. et al. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J. Med. Genet. 2016; 53(10): 662-71. https://dx.doi.org/10.1136/jmedgenet-2016-103891.
- Shafei R.A., Syrkasheva A.G., Romanov A.Y., Makarova N.P., Dolgushina N.V., Semenova M.L. Blastocyst hatching in humans. Russ. J. Dev. Biol. 2017; 48(1): 5-15. https://dx.doi.org/10.1134/S1062360417010106.
- Okutman Ö., Demirel C., Tülek F., Pfister V., Büyük U., Muller J. et al. Homozygous splice site mutation in ZP1 causes familial oocyte maturation defect. Genes (Basel). 2020; 11(4): 382. https://dx.doi.org/10.3390/genes11040382.
- Syrkasheva A.G., Dolgushina N.V., Romanov A.Y., Burmenskaya O.V., Makarova N.P., Ibragimova E.O. et al. Cell and genetic predictors of human blastocyst hatching success in assisted reproduction. Zygote. 2017; 25(05): 631-6. https://dx.doi.org/10.1017/S0967199417000508.
- Dai C., Chen Y., Hu L., Du J., Gong F., Dai J. et al. ZP1 mutations are associated with empty follicle syndrome: evidence for the existence of an intact oocyte and a zona pellucida in follicles up to the early antral stage. A case report. Hum. Reprod. 2019; 34(11): 2201-7. https://dx.doi.org/10.1093/humrep/dez174.
- Chen T., Bian Y., Liu X., Zhao S., Wu K., Yan L. et al. A recurrent missense mutation in ZP3 causes empty follicle syndrome and female infertility. Am. J. Hum. Genet. 2017; 101(3): 459-65. https://dx.doi.org/10.1016/j.ajhg.2017.08.001.
- Dai C., Hu L., Gong F., Tan Y., Cai S., Zhang S. et al. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet. Med. 2019; 21(2): 431-40. https://dx.doi.org/10.1038/s41436-018-0064-y.
- Alazami A.M., Awad S.M., Coskun S., Al-Hassan S., Hijazi H., Abdulwahab F.M. et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome. Biol. 2015; 16: 240. https://dx.doi.org/10.1186/s13059-015-0792-0.
- Sang Q., Li B., Kuang Y., Wang X., Zhang Z., Chen B. et al. Homozygous Mutations in WEE2 cause fertilization failure and female infertility. Am. J. Hum. Genet. 2018; 102(4): 649-57. https://dx.doi.org/10.1016/j.ajhg.2018.02.015.
- Zheng W., Zhou Z., Sha Q., Niu X., Sun X., Shi J. et al. Homozygous mutations in BTG4 cause zygotic cleavage failure and female infertility. Am. J. Hum. Genet. 2020; 107(1): 24-33. https://dx.doi.org/10.1016/j.ajhg.2020.05.010.
- Gardner D.K., Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum. Reprod. Update. 1997; 3(4): 367-82. https://dx.doi.org/10.1093/humupd/3.4.367.
- Ковальская Е.В., Сыркашева А.Г., Романов А.Ю., Макарова Н.П., Долгушина Н.В. Современные представления о компактизации эмбрионов человека в условиях in vitro. Технологии живых систем. 2017; 14(1): 25-35. [Kovalskaya E.V., Syrkasheva A.G, Romanov A.Y, Makarova N.P., Dolgushina N.V. Modern views on the compaction of the human embryo in vitro. Technologies of Living Systems. 2017; 14(1): 25-35. (in Russian)].
- Tadros W., Lipshitz H.D. The maternal-to-zygotic transition: a play in two acts. Development. 2009; 136(18): 3033-42. https://dx.doi.org/10.1242/dev.033183.
- Tong Z.B., Gold L., Pfeifer K.E., Dorward H., Lee E., Bondy C.A. et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 2000; 26(3): 267-8. https://dx.doi.org/10.1038/81547.
- Mahadevan S., Sathappan V., Utama B., Lorenzo I., Kaskar K., Van den Veyver I.B. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci. Rep. 2017; 7: 44667. https://dx.doi.org/10.1038/srep44667.
- Esposito G., Vitale A.M., Leijten F.P.J., Strik A.M., Koonen-Reemst A.M.C.B., Yurttas P. et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol. Cell. Endocrinol. 2007; 273(1-2): 25-31. https://dx.doi.org/10.1016/j.mce.2007.05.005.
- Zheng P., Dean J. Role of Filia, a maternal effect gene, in maintaining euploidy during cleavage-stage mouse embryogenesis. Proc. Natl. Acad. Sci. U S A. 2009; 106(18): 7473-8. https://dx.doi.org/10.1073/pnas.0900519106.
- Gao Z., Zhang X., Yu X., Qin D., Xiao Y., Yu Y. et al. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J. Mol. Cell. Biol. 2018; 10(1): 74-88. https://dx.doi.org/10.1093/jmcb/mjx035.
- Yurttas P., Vitale A.M., Fitzhenry R.J., Cohen-Gould L., Wu W., Gossen J.A. et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development. 2008; 135(15): 2627-36. https://dx.doi.org/10.1242/dev.016329.
- Titus S., Li F., Stobezki R., Akula K., Unsal E., Jeong K. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 2013; 5(172): 172ra21. https://dx.doi.org/10.1126/scitranslmed.3004925.
Received 31.10.2024
Accepted 26.11.2024
About the Authors
Yana O. Martirosyan, Researcher at the F. Paulsen Research and Educational Center for ART, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia,117997, Russia, Moscow, Ac. Oparin str., 4, marti-yana@yandex.ru, https://orcid.org/0000-0002-9304-4410
Albina I. Kadaeva, PhD student, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, albina.karimovai@mail.ru
Anna S. Bolshakova, Geneticist, Department of Clinical Genetics of the Institute of Reproductive Genetics, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(495)438-24-11, a_bolshakova@oparina4.ru, https://orcid.org/0000-0002-7508-0899
Tatiana A. Nazarenko, Dr. Med. Sci., Head of the Institute of Reproductive Medicine, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia,
117997, Russia, Moscow, Ac. Oparin str., 4, +7(495)438-13-41, t.nazarenko@mail.ru, https://orcid.org/0000-0002-5823-1667
Almina M. Biryukova, PhD, Obstetrician-Gynecologist at the F. Paulsen Research and Educational Center for ART, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, 7(495)531-44-44, a_birukova@oparina4.ru
Ayuma N. Askeralieva, Clinical Resident, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(913)175-31-44.