Molecular genetic predictors of polycystic ovary syndrome and its androgenic phenotypes

Chernukha G.E., Naidukova A.A., Kaprina E.K., Donnikov A.E.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia
Objective. To study the correlation between polycystic ovary syndrome (PCOS) and polymorphism in genes associated with metabolic dysfunction, impaired androgen biosynthesis and folliculogenesis.
Materials and methods. The study included 163 patients with PCOS (mean age is 25.2 (4.6) years, mean body mass index (BMI) is 23.9 (5.3) kg/m2) and 135 healthy controls who had no reproductive disorders or signs of androgenization (mean age is 49.8 (5.8) years, mean BMI is 27.4 (5.8) kg/m2). The examination of patients with PCOS included pelvic ultrasound, assessment of androgen levels, AMH, LH, FSH, and a two-hour glucose tolerance test with the evaluation of glucose and insulin levels. All patients were genotyped for 45 loci.
Results. PCOS was found to be associated with polymorphism of six genes. The genes Rub5B/SUOX (rs705702), THADA (rs12468394), OCT1 (rs6282031), SLCO1B1 (rs4149056) are supposed to be linked with insulin resistance, impaired glucose tolerance and type 2 diabetes mellitus. Impaired function of the genes DENND1A (rs10818854) and YAP1 (rs1894116) may result in hypothalamic-pituitary dysfunction and hyperandrogenism. The genes Rub5B/SUOX, SLCO1B1, and OCT1 are associated with an increase in glucose and insulin levels, and gene YAP1 is correlated with hyperandrogenism.
Conclusion. These results can serve as the basis for further associative and functional studies on the genetic characteristics of PCOS in the population of the Russian women. The development of an individual genetic risk scale for the diagnosis of PCOS in adolescent girls and women is promising.

Keywords

polycystic ovary syndrome
gene
polymorphism
phenotype

References

  1. National Institutes of Health. Evidence-based Methodology Workshop on Polycystic Ovary Syndrome. December 3-5, 2012. Final report. EXECUTIVE SUMMARY.
  2. Gibson-Helm M., Teede H., Dunaif A., Dokras A. Delayed diagnosis and a lack of information associated with dissatisfaction in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2016; 102(2): 604-12. https://dx.doi.org/10.1210/jc.2016-2963.
  3. Schüring A.N., Welp A., Gromoll J., Zitzmann M., Sonntag B., Nieschlag E. et al. Role of the CAG repeat polymorphism of the androgen receptor gene in polycystic ovary syndrome (PCOS). Exp. Clin. Endocrinol. Diabetes. 2012; 120(2): 73-9. https://dx.doi.org/10.1055/s-0031-1291343.
  4. Ruan Y., Ma J., Xie X. Association of IRS-1 and IRS-2 genes polymorphisms with polycystic ovary syndrome: a meta-analysis. Endocr. J. 2012; 59(7): 601-9. https://dx.doi.org/10.1507/endocrj.ej11-0387.
  5. Chen Z.J., Zhao H., He L., Shi Y., Qin Y., Shi Y. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 2011; 43(1): 55-9. https://dx.doi.org/10.1038/ng.732.
  6. Shi Y., Zhao H., Shi Y., Cao Y., Yang D., Li Z. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 2012; 44(9): 1020-5. https://dx.doi.org/10.1038/ng.2384.
  7. Goodarzi M.O., Jones M.R., Li X., Chua A.K., Garcia O.A., Chen Y.D. et al. Replication of association of DENND1A and THADA variants with polycystic ovary syndrome in European cohorts. J. Med. Genet. 2012; 49: 90-5. https://dx.doi.org/10.1136/jmedgenet-2011-100427.
  8. Welt C.K., Styrkarsdottir U., Ehrmann D.A., Thorleifsson G., Arason G., Gudmundsson J.A. et al. Variants in DENND1A are associated with polycystic ovary syndrome in women of European ancestry. J. Clin. Endocrinol. Metab. 2012; 97(7): E1342-7. https://dx.doi.org/10.1210/jc.2011-3478.
  9. Hayes M.G., Urbanek M., Ehrmann D.A., Armstrong L.L., Lee J.Y., Sisk R. et al. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nat. Commun. 2015; 6: 7502. https://dx.doi.org/10.1038/ncomms8502.
  10. Беглова А.Ю., Елгина С.И., Гордеева Л.А. Полиморфизм генов CYP11а1, CYP17, CYP19 у женщин репродуктивного возраста с синдромом поликистозных яичников. Акушерство и гинекология. 2019; 12: 148-53. [Beglova A.Yu., Elgina S.I., Gordeeva L.A. Polymorphism of the CYP11A1, CYP17A1, and CYP19A1 genes in reproductive-aged women with polycystic ovary syndrome. Akusherstvo i Ginekologiya/ Obstetrics and gynecology. 2019; 12: 148-53. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.12.148-153.
  11. Табеева Г.И., Немова Ю.И., Найдукова А.А., Кузнецова Е.Б., Залетаев Д.Б., Чернуха Г.Е. Полиморфизм гена FMR1 при синдроме поликистозных яичников. Акушерство и гинекология. 2016; 3: 50-6. [Tabeeva G.I., Nemova Yu.I., Naidukova A.A., Kuznetsova E.B., Zaletaev D.B., Chernukha G.E. FMR1 gene polymorphism in polycystic ovary syndrome. Akusherstvo i ginekologiya/ Obstetrics and Gynecology. 2016; 3: 50-6. (in Russian)]. https://dx.doi.org/10.18565/aig.2016.3.50-56.
  12. Lerchbaum E., Trummer O., Giuliani A., Gruber H.J., Pieber T.R., Obermayer-Pietsch B. Susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21, and 9q33.3 in a cohort of Caucasian women. Horm. Metab. Res. 2011; 43(11): 743-7. https://dx.doi.org/10.1055/s-0031-12 86279.
  13. Cui L., Zhao H., Zhang B., Qu Z., Liu J., Liang X. et al. Genotype-phenotype correlations of PCOS susceptibility SNPs identified by GWAS in a large cohort of Han Chinese women. Hum. Reprod. 2013; 28(2): 538-44. https://dx.doi.org/10.1093/humrep/des424.
  14. Tian Y., Li J., Su S., Cao Y., Wang Z., Zhao S., Zhao H. PCOS-GWAS susceptibility variants in THADA, INSR, TOX3, and DENND1A are associated with metabolic syndrome or insulin resistance in women with PCOS. Front. Endocrinol. (Lausanne). 2020; 11: 274. https://dx.doi.org/10.3389/fendo.2020.00274.
  15. Wang Z., Li T., Zhang W., You L., Zhao Y., Xia M. et al. Variants in DENND1A and LHCGR are associated with endometrioid adenocarcinoma. Gynecol. Oncol. 2012; 127(2): 403-5. https://dx.doi.org/10.1016/j.ygyno.2012.08.007.
  16. McAllister J.M., Modi B., Miller B.A., Biegler J., Bruggeman R., Legro R.S. et al. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proc. Natl. Acad. Sci. USA. 2014; 111(15): E1519-27. https://dx.doi.org/10.1073/pnas.1400574111.
  17. Allaire P.D., Marat A.L., Dall'Armi C., Di Paolo G., McPherson P.S., Ritter B. The connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early endosomes. Mol. Cell. 2010; 37(3): 370-82. https://dx.doi.org/10.1016/j.molcel.2009.12.037.
  18. Louwers Y.V., Stolk L., Uitterlinden A.G., Laven J.S. Cross-ethnic meta-analysis of genetic variants for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2013; 98(12): F2006-12. https://dx.doi.org/10.1210/jc.2013-2495.
  19. Zeggini E., Scott L.J., Saxena R., Voight B.F., Marchini J.L., Hu T. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008; 40(5): 638-45. https://dx.doi.org/10.1038/ng.120.
  20. Sanghera D.K., Been L., Ortega L., Wander G.S., Mehra N.K., Aston C.E. et al. Testing the association of novel meta-analysis-derived diabetes risk genes with type II diabetes and related metabolic traits in Asian Indian Sikhs. J. Hum. Genet. 2009; 54(2): 162-8. https://dx.doi.org/10.1038/jhg.2009.7.
  21. Stancakova A., Kuulasmaa T., Paananen J., Jackson A.U., Bonnycastle L.L., Collins F.S. et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes. 2009; 58(9): 2129-36. https://dx.doi.org/10.2337/db09-0117.
  22. Zhao H., Xu X., Xing X., Wang J., He L., Shi Y. et al. Family-based analysis of susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Hum. Reprod. 2012; 27(1): 294-8. https://dx.doi.org/10.1093/humrep/der379 29.
  23. Yi L., Huang X., Guo F., Zhou Z., Dou Y., Huan J. Yes-associated protein (YAP) signaling regulates lipopolysaccharide-induced tissue factor expression in human endothelial cells. Surgery. 2016; 159(5): 1436-48. : https://dx.doi.org/10.1016/j.surg.2015.12.008.
  24. Lehmann W., Mossmann D., Kleemann J., Mock K., Meisinger C., Brummer T. et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 2016; 7: 10498. https://dx.doi.org/10.1038/ncomms10498.
  25. Li T., Zhao H., Zhao X., Zhang B., Cui L., Shi Y. et al. Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J. Med. Genet. 2012; 49(4): 254-7. https://dx.doi.org/10.1136/jmedgenet-2011-100727.
  26. Jiang L.L., Xie J.K., Cui J.Q., Wei D., Yin B.L., Zhang Y.N. et al. Promoter methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome. Medicine (Baltimore). 2017; 96(2): e5768. https://dx.doi.org/10.1097/MD.0000000000005768.
  27. Chang H.H., Hsueh Y.S., Cheng Y.W., Ou H.T., Wu M.H. Association between polymorphism of OCT1 and metabolic response to metformin in women with polycystic ovary syndrome. Int. J. Mol. Sci. 2019; 20(7): 1720. https://dx.doi.org/10.3390/ijms20071720.
  28. Malagnino V., Hassner J., Seibert I., Stolzenurg A., Sager C.P., Zu Schwabedissen H.E.M. LST-3TM12 is a member of the OETP1B family and a functional transporter. J. Biochem. Pharmacol. 2018; 148: 75-87. https://dx.doi.org/10.1016/j.bcp.2017.12.012.
  29. Sir-Petermann T., Pérez-Bravo F., Angel B., Maliqueo M., Calvillan M., Palomino A. G972R polymorphism of IRS-1 in women with polycystic ovary syndrome. Diabetologia. 2001; 44(9): 1200-1. https://dx.doi.org/10.1007/s001250170001.
  30. El Mkadem S.A., Lautier C., Macari F., Molinari N., Lefèbvre P., Renard E. et al. Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-tosevere insulin resistance of women with polycystic ovary syndrome. Diabetes. 2001; 50(9): 2164-8. https://dx.doi.org/10.2337/diabetes. 50.9.2164.

Received 11.12.2020

Accepted 28.01.2021

About the Authors

Galina E. Chernukha, Dr. Med. Sci., Professor, Chief Scientific Researcher of the Department of Gynecological Endocrinology, V.I. Kulakov NMRC for OG&P,
Ministry of Health of Russia. Tel.: +7(916)311-05-21. E-mail: g_chernukha@oparina4.ru. ORCID: 0000-0002-9065-5689. 117997, Russia, Moscow, Ac. Oparina str., 4.
Andrey E. Donnikov, M.D., Ph.D., Head of the Laboratory of Molecular Genetic Methods, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia.
Tel.: +7(495)438-49-51. E-mail: a_donnikov@oparina4.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Alina A. Naydukova, post-graduate student, Department of Gynecological Endocrinology, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia.
Tel.: +7(916)675-00-97. E-mail: aleeshka@mail.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Elena K. Kaprina, postgraduate student, Department of Gynecological Endocrinology, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia.
Tel.: +7(916)129-41-18. E-mail: kaprina_elena@mail.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.

For citation: Chernukha G.E., Naidukova A.A., Kaprina E.K., Donnikov A.E. Molecular genetic predictors of polycystic ovary syndrome and its androgenic phenotypes.
Akusherstvo i Ginekologiya / Obstetrics and gynecology. 2021; 4: 120-127 (in Russian)
https://dx.doi.org/10.18565/aig.2021.4.120-127

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.