Cellular components of malignant ascites and their potential role in effective therapy for serous ovarian cancer

Slonov A.V., Shender V.O., Aleshikova O.I., Gerfanova E.V., Babaeva N.A., Akopyan E.G., Antonova I.B., Ashrafyan L.A., Sukhikh G.T.

1) Clinical Hospital No. 123, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical and Biological Agency, Odintsovo, Russia; 2) Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical and Biological Agency, Moscow, Russia; 3) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 4) Russian Research Center of Roentgenology and Radiology, Ministry of Health of Russia, Moscow, Russia

Ovarian cancer (OC) is a malignant neoplasm of the female reproductive organs with the highest mortality rate among patients with gynecological cancers. It is mainly detected at late stages and accompanied by ascites. Malignant ascites appears to provide a microenvironment that promotes OC progression. The data of the Russian and foreign studies give insight into numerous components of ascites including populations of tumor and stromal cells circulating in a cell-free environment or in an adhesive state, the proteomic and metabolomic profile of ascites, etc. Mediated effects on these components open new perspectives for more effective therapy of serous OC. 
Conclusion: Malignant ascites promotes proliferation, invasion and metastasis of tumor cells through various mechanisms that reduce the efficacy of conventional therapies. Consequently, there is a clear necessity to develop new therapeutic approaches.

Authors' contributions: Slonov A.V., Shender V.O. – study design; Aleshikova O.I., Gerfanova E.V., N.A. Babaeva N.A. – writing the text; Akopyan E.G., Antonova I.B. – text editing; Ashrafyan L.A., Sukhikh G.T. – organization and concept of the study.
Conflicts of interest: The authors declare no possible conflicts of interest.
Funding: The study was conducted without sponsorship.
Acknowledgements: The authors express their gratitude to M.A. Lagarkova, Dr. Bio. Sci., Prof., Corresponding Member of RAS, CEO, Lopukhin Federal Research and Clinical Centre for Physical-Chemical Medicine, for her assistance in the preparation of the article.
For citation: Slonov A.V., Shender V.O., Aleshikova O.I., Gerfanova E.V., 
Babaeva N.A., Akopyan E.G., Antonova I.B., Ashrafyan L.A., Sukhikh G.T. 
Cellular components of malignant ascites and their potential role in effective therapy for serous ovarian cancer.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (1): 18-26 (in Russian)
https://dx.doi.org/10.18565/aig.2024.246

Keywords

ovarian cancer
ascites
tumor cells
tumor microenvironment

References

  1. Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front. Oncol. 2013; 3: 256. https://dx.doi.org/10.3389/fonc.2013.00256.
  2. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71(3): 209-49. https://dx.doi.org/10.3322/caac.21660.
  3. Kim S., Kim B., Song Y.S. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 2016; 107(9): 1173-8. https://dx.doi.org/10.1111/cas.12987.
  4. Rizvi I., Gurkan U.A., Tasoglu S., Alagic N., Celli J.P., Mensah L.B. et al. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl. Acad. Sci. U. S. A. 2013; 110(22): E1974-83. https://dx.doi.org/10.1073/pnas.1216989110.
  5. Tan D.S., Agarwal R., Kaye S.B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006; 7(11): 925-34. https://dx.doi.org/10.1016/S1470-2045(06)70939-1.
  6. Bjørge L., Junnikkala S., Kristoffersen E.K., Hakulinen J., Matre R., Meri S. Resistance of ovarian teratocarcinoma cell spheroids to complement-mediated lysis. Br. J. Cancer. 1997; 75(9): 1247-55. https://dx.doi.org/10.1038/bjc.1997.213.
  7. Kipps E., Tan D.S., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat. Rev. Cancer. 2013; 13(4): 273-82. https://dx.doi.org/10.1038/nrc3432.
  8. Holm-Nielsen P. Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol. Microbiol. Scand. 1953; 33(1): 10-21. https://dx.doi.org/10.1111/j.1699-0463.1953.tb04805.x.
  9. Garrison R.N., Galloway R.H., Heuser L.S. Mechanisms of malignant ascites production. J. Surg. Res. 1987; 42(2): 126-32. https://dx.doi.org/10.1016/0022-4804(87)90109-0.
  10. Huang H., Li Y.J., Lan C.Y., Huang Q.D., Feng Y.L., Huang Y.W. et al. Clinical significance of ascites in epithelial ovarian cancer. Neoplasma. 2013; 60(5):546-52. https://dx.doi.org/10.4149/neo_2013_071.
  11. Adam R.A., Adam Y.G. Malignant ascites: past, present, and future. J. Am. Coll. Surg. 2004; 198(6): 999-1011. https://dx.doi.org/10.1016/j.jamcollsurg.2004.01.035.
  12. Hirabayashi K., Graham J. Genesis of ascites in ovarian cancer. Am. J. Obstet. Gynecol. 1970; 106(4): 492-7. https://dx.doi.org/10.1016/0002-9378(70)90031-1.
  13. Kosaka N., Hasegawa K., Kiuchi K., Ochiai S., Nagai T., Machida H. et al. Cytological findings of ascitic fluid with a malignant ovarian steroid cell tumor: a case report and literature review. Acta Cytol. 2017; 61(2): 165-71. https://dx.doi.org/10.1159/000458750.
  14. Ayhan A., Gultekin M., Taskiran C., Dursun P., Firat P., Bozdag G. et al. Ascites and epithelial ovarian cancers: a reappraisal with respect to different aspects. Int. J. Gynecol. Cancer. 2007; 17(1): 68-75. https://dx.doi.org/10.1111/j.1525-1438.2006.00777.x.
  15. Виллерт А.Б., Коломиец Л.А., Юнусова Н.В. Асцит как микроокружение опухоли при раке яичников: взаимосвязь прогноза и химиорезистентности. Успехи молекулярной онкологии. 2019; 6(2): 8-20. [Villert A.B., Kolomiets L.A., Yunusova N.V. Ascitis as a unique microenvironment of tumors in ovarian cancer: interaction with prognosis and chemoresistance. Advances in Molecular Oncology. 2019; 6(2): 8-20. (in Russian)]. https://dx.doi.org/10.17650/2313-805X-2019-6-2-8-20.
  16. Chu C.S., Kim S.H., June C.H., Coukos G. Immunotherapy opportunities in ovarian cancer. Expert Rev. Anticancer Ther. 2008; 8(2): 243-57. https://dx.doi.org/10.1586/14737140.8.2.243.
  17. Chaplin D.D. Overview of the immune response. J. Allergy Clin. Immunol. 2010; 125(2 Suppl 2): S3-23. https://dx.doi.org/10.1016/j.jaci.2009.12.980.
  18. Bamias A., Tsiatas M.L., Kafantari E., Liakou C., Rodolakis A., Voulgaris Z. et al. Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3+CD56+ cells with platinum resistance. Gynecol. Oncol. 2007; 106(1): 75-81. https://dx.doi.org/10.1016/j.ygyno.2007.02.029.
  19. Rådestad E., Klynning C., Stikvoort A., Mogensen O., Nava S., Magalhaes I. et al. Immune profiling and identification of prognostic immune-related risk factors in human ovarian cancer. Oncoimmunology. 2018; 8(2): e1535730. https://dx.doi.org/10.1080/2162402X.2018.1535730.
  20. Vazquez J., Chavarria M., Lopez G.E., Felder M.A., Kapur A., Romo Chavez A. et al. Identification of unique clusters of T, dendritic, and innate lymphoid cells in the peritoneal fluid of ovarian cancer patients. Am. J. Reprod. Immunol. 2020; 84(3): e13284. https://dx.doi.org/10.1111/aji.13284.
  21. Correa R.J., Peart T., Valdes Y.R., DiMattia G.E., Shepherd T.G. Modulation of AKT activity is associated with reversible dormancy in ascites-derived epithelial ovarian cancer spheroids. Carcinogenesis. 2012; 33(1): 49-58. https://dx.doi.org/10.1093/carcin/bgr241.
  22. Федоров А.А., Ермак Н.А., Геращенко Т.С., Топольницкий Е.Б., Шефер Н.А., Родионов Е.О., Стахеева М.Н. Поляризация макрофагов: механизмы, маркеры и факторы индукции. Сибирский онкологический журнал. 2022; 21(4): 124-36. [Fedorov A.A., Ermak N.A., Gerashchenko T.S., Topolnitskii E.B., Shefer N.A., Rodionov E.O., Stakheyeva M.N. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian journal of oncology. 2022; 21(4): 124-36. (in Russian)]. https://dx.doi.org/10.21294/1814-4861-2022-21-4-124-136.
  23. Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages. Front. Immunol. 2019; 10: 1084. https://dx.doi.org/10.3389/fimmu.2019.01084.
  24. Adhikary T., Wortmann A., Finkernagel F., Lieber S., Nist A., Stiewe T. et al. Interferon signaling in ascites-associated macrophages is linked to a favorable clinical outcome in a subgroup of ovarian carcinoma patients. BMC Genomics. 2017; 18(1): 243. https://dx.doi.org/10.1186/s12864-017-3630-9.
  25. Nowak M., Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 2020; 9(5): 1299. https://dx.doi.org/10.3390/cells9051299.
  26. Gupta V., Yull F., Khabele D. Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers. 2018; 10: 366. https://dx.doi.org/10.3390/cancers10100366.
  27. Condeelis J., Pollard J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006; 124(2): 263-6. https://dx.doi.org/10.1016/j.cell.2006.01.007.
  28. Sica A., Larghi P., Mancino A., Rubino L., Porta C., Totaro M.G. et al. Macrophage polarization in tumour progression. Semin. Cancer Biol. 2008; 18(5): 349-55. https://dx.doi.org/10.1016/j.semcancer.2008.03.004.
  29. Colvin E.K. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front. Oncol. 2014; 4: 137. https://dx.doi.org/10.3389/fonc.2014.00137.
  30. Gartung A., Yang J., Sukhatme V.P., Bielenberg D.R., Fernandes D., Chang J. et al. Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proc. Natl. Acad. Sci. U. S. A. 2019; 116(5): 1698-703. https://dx.doi.org/10.1073/pnas.1803999116.
  31. Reader J., Harper A.K., Legesse T., Staats P.N., Goloubeva O., Rao G.G. et al. EP4 and class III β-tubulin expression in uterine smooth muscle tumors: implications for prognosis and treatment. Cancers (Basel). 2019; 11(10): 1590. https://dx.doi.org/10.3390/cancers11101590.
  32. Reader J.C., Staats P., Goloubeva O., Jian N., Roque D.M., Matheny M.E. et al. Abstract 5169: Functional studies of the prostaglandin E2 receptor EP4 in ovarian cancer. Cancer Res. 2016; 76(14 Suppl.): 5169. https://dx.doi.org/10.1158/1538-7445.AM2016-5169.
  33. Sweat R.S., Stapor P.C., Murfee W.L. Relationships between lymphangiogenesis and angiogenesis during inflammation in rat mesentery microvascular networks. Lymphat. Res. Biol. 2012; 10(4): 198-207. https://dx.doi.org/10.1089/lrb.2012.0014.
  34. Roque D.M., Bellone S., Buza N., Romani C., Cocco E., Bignotti E. et al. Class III β-tubulin overexpression in ovarian clear cell and serous carcinoma as a maker for poor overall survival after platinum/taxane chemotherapy and sensitivity to patupilone. Am. J. Obstet. Gynecol. 2013; 209(1): 62.e1-9. https://dx.doi.org/10.1016/j.ajog.2013.04.017.
  35. Roque D.M., Buza N., Glasgow M., Bellone S., Bortolomai I., Gasparrini S. et al. Class III β-tubulin overexpression within the tumor microenvironment is a prognostic biomarker for poor overall survival in ovarian cancer patients treated with neoadjuvant carboplatin/paclitaxel. Clin. Exp. Metastasis. 2014; 31(1): 101-10. https://dx.doi.org/10.1007/s10585-013-9614-5.
  36. Reinartz S., Schumann T., Finkernagel F., Wortmann A., Jansen J.M., Meissner W. et al. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int. J. Cancer. 2014; 134(1): 32-42. https://dx.doi.org/10.1002/ijc.28335.
  37. Нозадзе Д.Н., Рвачёва А.В., Казначеева Е.И., Сергиенко И.В. Моноциты в развитии и дестабилизации атеросклеротической бляшки. Атеросклероз и дислипидемии. 2012; 3(8): 25-36. [Nozadze D.N., Rvacheva A.V., Kaznacheeva E.I., Sergienko I.V. Monocytes in the development and destabilization of atherosclerotic plaques. Journal of Atherosclerosis and Dyslipidemias. 2012; 3(8): 25-36. (in Russian)].
  38. Vivier E., Raulet D.H., Moretta A., Caligiuri M.A., Zitvogel L., Lanier L.L. et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011; 331(6013): 44-9. https://dx.doi.org/10.1126/science.1198687.
  39. Lai P., Rabinowich H., Crowley-Nowick P.A., Bell M.C., Mantovani G., Whiteside T.L. Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin. Cancer Res. 1996; 2(1): 161-73.
  40. Castriconi R., Cantoni C., Della Chiesa M., Vitale M., Marcenaro E., Conte R. et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc. Natl. Acad. Sci. U. S. A. 2003; 100(7): 4120-5. https://dx.doi.org/10.1073/pnas.0730640100.
  41. Greppi M., Tabellini G., Patrizi O., Candiani S., Decensi A., Parolini S. et al. Strengthening the antitumor NK cell function for the treatment of ovarian cancer. Int. J. Mol. Sci. 2019; 20(4): 890. https://dx.doi.org/10.3390/ijms20040890.
  42. Nham T., Poznanski S.M., Fan I.Y., Shenouda M.M., Chew M.V., Lee A.J. et al. Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol. Immunother. 2018; 67(4): 575-87. https://dx.doi.org/10.1007/s00262-017-2112-x.
  43. Roque D.M., Santin A.D. Antigen-specific immunotherapy for ovarian cancer. In: Advances in Ovarian Cancer Management. 2012: 136-54. https://dx.doi.org/10.2217/ebo.11.180.
  44. Curiel T.J., Cheng P., Mottram P., Alvarez X., Moons L., Evdemon-Hogan M. et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 2004; 64(16): 5535-8. https://dx.doi.org/10.1158/0008-5472.CAN-04-1272.
  45. Wefers C., Duiveman-de Boer T., Yigit R., Zusterzeel P.L.M., van Altena A.M., Massuger L.F.A.G. et al. Survival of ovarian cancer patients is independent of the presence of DC and T cell subsets in ascites. Front. Immunol. 2018; 9: 3156. https://dx.doi.org/10.3389/fimmu.2018.03156.
  46. Brencicova E., Jagger A.L., Evans H.G., Georgouli M., Laios A., Attard Montalto S. et al. Interleukin-10 and prostaglandin E2 have complementary but distinct suppressive effects on Toll-like receptor-mediated dendritic cell activation in ovarian carcinoma. PLoS One. 2017; 12(4): e0175712. https://dx.doi.org/10.1371/journal.pone.0175712.
  47. Gabrilovich D.I. Myeloid-derived suppressor cells. Cancer Immunol. Res. 2017; 5(1): 3-8. https://dx.doi.org/10.1158/2326-6066.CIR-16-0297.
  48. Baert T., Vankerckhoven A., Riva M., Van Hoylandt A., Thirion G., Holger G. et al. Myeloid derived suppressor cells: key drivers of immunosuppression in ovarian cancer. Front. Immunol. 2019; 10: 1273. https://dx.doi.org/10.3389/fimmu.2019.01273.
  49. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016; 16(9): 582-98. https://dx.doi.org/10.1038/nrc.2016.73.
  50. Румянцев Е.Е. Роль опухоль-ассоциированных фибробластов в формировании тканевого микроокружения и лекарственной резистентности немелкоклеточного рака легкого. Вестник НовГУ. Сер.: Медицинские науки. 2022; 2(127): 47-50. [Rumyantsev Ye.Ye. Cancer-associated fibroblasts forming tissue microenvironment and drug resistance of non-small cell lung cancer. Vestnik NovSU. Issue: Medical Sciences. 2022; 2(127): 47-50. (in Russian)]. https://dx.doi.org/10.34680/2076-8052.2022.2(127).47-50.
  51. Кузьмичева В.И., Волова Л.Т., Гильмиярова Ф.Н., Быков И.М., Авдеева Е.В., Колотьева Н.А. Фибробласты как объект изучения пролиферативной активности in vitro. Наука и инновации в медицине. 2020; 5(3): 210-5. [Kuzmicheva V.I., Volova L.T., Gilmiyarova F.N., Bykov I.M., Avdeeva E.V., Kolotieva N.A. Fibroblasts as the subject of proliferative activity research in vitro. Science and Innovations in Medicine. 2020; 5(3): 210-5. (in Russian)]. https://dx.doi.org/10.35693/2500-1388-2020-5-3-210-215.
  52. Bronzert D.A., Pantazis P., Antoniades H.N., Kasid A., Davidson N., Dickson R.B. et al. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc. Natl. Acad. Sci. U. S. A. 1987; 84(16): 5763-7. https://dx.doi.org/10.1073/pnas.84.16.5763.
  53. Cai J., Tang H., Xu L., Wang X., Yang C., Ruan S. et al. Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis. 2012; 33(1): 20-9. doi: 10.1093/carcin/bgr230.
  54. Dasari S., Fang Y., Mitra A.K. Cancer associated fibroblasts: naughty neighbors that drive ovarian cancer progression. Cancers (Basel). 2018; 10(11): 406. https://dx.doi.org/10.3390/cancers10110406.
  55. Yeung T.L., Leung C.S., Wong K.K., Samimi G., Thompson M.S., Liu J. et al. TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Res. 2013; 73(16): 5016-28. https://dx.doi.org/10.1158/0008-5472.CAN-13-0023.
  56. Mitra A.K., Zillhardt M., Hua Y., Tiwari P., Murmann A.E., Peter M.E. et al. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov. 2012; 2(12): 1100-8. https://dx.doi.org/10.1158/2159-8290.CD-12-0206.
  57. Wang Z., Tan Y., Yu W., Zheng S., Zhang S., Sun L. et al. Small role with big impact: miRNAs as communicators in the cross-talk between cancer-associated fibroblasts and cancer cells. Int. J. Biol. Sci. 2017; 13(3): 339-48. https://dx.doi.org/10.7150/ijbs.17680.
  58. Кайгородова Е.В., Федулова Н.В., Очиров М.О., Дьяков Д.А., Молчанов С.В., Часовских Н.Ю. Различные популяции опухолевых клеток в асцитической жидкости больных раком яичников. Бюллетень сибирской медицины. 2020; 19(1): 50-8. [Kaigorodova E.V., Fedulova N.V., Ochirov M.O., Dyakov D.A., Molchanov S.V., Chasovskikh N.Yu. Dissimilar tumor cell populations in ascitic fluid of ovarian cancer patients. Bulletin of Siberian Medicine. 2020; 19(1): 50-8. (in Russian)]. https://dx.doi.org/10.20538/1682-0363-2020-1-50-58.
  59. Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One. 2012; 7(10): e46858. https://dx.doi.org/10.1371/journal.pone.0046858.
  60. Comisso E., Scarola M., Rosso M., Piazza S., Marzinotto S., Ciani Y. et al. OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness. Oncogene. 2017; 36(30): 4253-66. https://dx.doi.org/10.1038/onc.2017.20.
  61. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998; 95(3): 379-91. https://dx.doi.org/10.1016/s0092-8674(00)81769-9.
  62. Wang Y.J., Herlyn M. The emerging roles of Oct4 in tumor-initiating cells. Am. J. Physiol. Cell. Physiol. 2015; 309(11): C709-18. https://dx.doi.org/10.1152/ajpcell.00212.2015.
  63. Ruan Z., Yang X., Cheng W. OCT4 accelerates tumorigenesis through activating JAK/STAT signaling in ovarian cancer side population cells. Cancer Manag. Res. 2018; 11: 389-99. https://dx.doi.org/10.2147/CMAR.S180418.
  64. Shender V.O., Pavlyukov M.S., Ziganshin R.H., Arapidi G.P., Kovalchuk S.I., Anikanov N.A. et al. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Mol. Cell. Proteomics. 2014; 13(12): 3558-71. https://dx.doi.org/10.1074/mcp.M114.041194.
  65. Wang Z., Wang S., Qin J., Zhang X., Lu G., Liu H. et al. Splicing factor BUD31 promotes ovarian cancer progression through sustaining the expression of anti-apoptotic BCL2L12. Nat. Commun. 2022; 13(1): 6246. https://dx.doi.org/10.1038/s41467-022-34042-w.
  66. Shnaider P.V., Ivanova O.M., Malyants I.K., Anufrieva K.S., Semenov I.A., Pavlyukov M.S. et al. New insights into therapy-induced progression of cancer. Int. J. Mol. Sci. 2020; 21(21): 7872. https://dx.doi.org/10.3390/ijms21217872.
  67. Kuk C., Kulasingam V., Gunawardana C.G., Smith C.R., Batruch I., Diamandis E.P. Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Mol. Cell. Proteomics. 2009; 8(4): 661-9. https://dx.doi.org/10.1074/mcp.M800313-MCP200.
  68. Ahmed N., Greening D., Samardzija C., Escalona R.M., Chen M., Findlay J.K. et al. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells. Sci. Rep. 2016; 6: 30061. https://dx.doi.org/10.1038/srep30061.
  69. Yuan Y., Sun L., Wang X., Chen J., Jia M., Zou Y. et al. Identification of a new GLDC gene alternative splicing variant and its protumorigenic roles in lung cancer. Future Oncol. 2019; 15(36): 4127-39. https://dx.doi.org/10.2217/fon-2019-0403.
  70. Zhang W.C., Shyh-Chang N., Yang H., Rai A., Umashankar S., Ma S. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 2012; 148(1-2): 259-72. https://dx.doi.org/10.1016/j.cell.2011.11.050.
  71. Kuo C.Y., Ann D.K. When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun. (Lond). 2018; 38(1):47. https://dx.doi.org/10.1186/s40880-018-0317-9.
  72. Li J., Condello S., Thomes-Pepin J., Ma X., Xia Y., Hurley T.D. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell. Stem. Cell. 2017; 20(3): 303-314.e5. https://dx.doi.org/10.1016/j.stem.2016.11.004.
  73. Ehmsen S., Pedersen M.H., Wang G., Terp M.G., Arslanagic A., Hood B.L. et al. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome. Cell. Rep. 2019; 27(13): 3927-3938.e6. https://dx.doi.org/10.1016/j.celrep.2019.05.104.

Received 07.10.2024

Accepted 20.12.2024

About the Authors

Andrey V. Slonov, PhD, Chief Physician, Clinical Hospital No.123 of Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia,
143007, Russia, Moscow Region, Odintsovo, Krasnogorskoye Shosse, 15, dr.slon83@gmail.com, https://orcid.org/0000-0003-4416-7315
Victoria O. Shender, PhD (in Chemistry), Head of the Laboratory, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia,
119435, Russia, Moscow, Malaya Pirogovskaya str., 1a, shender_vika@mail.ru, https://orcid.org/000-0001-9156-2938
Olga I. Aleshikova, PhD, Senior Researcher at the Institute of Oncogynecology and Mammology, oncologist at the Oncological Department of Surgical Methods of Treatment, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia,
117997, Russia, Moscow, Ac. Oparin str., 4, olga.aleshikova@gmail.com, https://orcid.org/ 0000-0002-2957-3940
Evgeniya V. Gerfanova, PhD, oncologist-gynecologist at the Institute of Oncogynecology and Mammology, Department of Innovative Oncology and Gynecology,
Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia,
117997, Russia, Moscow, Ac. Oparin str., 4, +7(916)752-71-87, evgeniyagerf@gmail.com, e_gerfanova@oparina4.ru, https://orcid.org/0000-0001-9092-7149
Nataliya A. Babaeva, Dr. Med. Sci., Leading Researcher at the Institute of Oncogynecology and Mammology, oncologist at the Oncological Department of Surgical Methods of Treatment, V.I. Kulakov National Medical Research Center of the Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, n_babaeva@oparina4.ru,
https://orcid.org/0000-0002-4654-9512
Irina B. Antonova, Dr. Med. Sci., Head of the Laboratory for Comprehensive Diagnosis and Treatment of Diseases of Genitourinary and Reproductive Systems in Adults and Children, Russian Research Center of Roentgenology and Radiology, Ministry of Health of Russia, 117485, Russia, Moscow, Profsoyuznaya str., 86, iran24@yandex.ru,
https://orcid.org/0000-0003-2668-2110
Elena G. Akopyan, PhD, academic degree applicant, Laboratory for Comprehensive Diagnosis and Treatment of Diseases of Genitourinary and Reproductive Systems in Adults and Children, Russian Research Center of Roentgenology and Radiology, Ministry of Health of Russia, 117485, Russia, Moscow, Profsoyuznaya str., 86, lenart28@mail.ru,
https://orcid.org/ 0009-0009-2394-6038
Lev A. Ashrafyan, Academician of the Russian Academy of Sciences, Professor, Dr. Med. Sci., Head of the Institute of Oncogynecology and Mammology,
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia,
117997, Russia, Moscow, Ac. Oparina str., 4, levaa2004@yahoo.com, https://orcid.org/0000-0001-6396-4948
Gennady T. Sukhikh, Dr. Med. Sci., Professor, Academician of the RAS, Director of the Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, sekretariat@oparina4.ru, https://orcid.org/0000-0002-7712-1260
Corresponding author: Evgeniya V. Gerfanova, evgeniyagerf@gmail.com

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.