Placenta-specific micro-RNA expression in fetal growth restriction

Bushtyreva I.O., Kuznetsova N.B., Zabanova E.A., Butenko E.V., Pokudina I.O., Shkurat T.P.

1) Rostov State Medical University, Ministry of Health of the Russian Federation, Rostov-on-Don, Russia; 2) Perinatal Center, Rostov-on-Don, Russia; 3) “Professor Bushtyreva Clinic” LLC, Rostov-on-Don, Russia; 4) South Federal University, Rostov-on-Don, Russia
Objective. To analyze the expression of placenta-specific microRNAs in pregnant women with fetal growth restriction (FGR) and with physiological pregnancy.
Materials and methods. The investigation enrolled 42 women at 30-34 weeks’ gestation (27 with FGR and 15 with uncomplicated pregnancy), who were matched for age, anthropometric characteristics, features of an obstetric and gynecological history, and concomitant diseases. All the pregnant women with FGR were observed to have manifestations of different degrees of fetoplacental insufficiency. The patients underwent peripheral venous blood sampling. The expression of eight microRNAs (microRNA-10b-5p, microRNA-145-5p, microRNA-122-5p,
microRNA-141-3p, microRNA-125b-5p, microRNA-205-5p, microRNA-210-3p, and microRNA-517-5p) was determined by real-time polymerase chain reaction (PCR). The change in microRNA expression levels was estimated using the ∆ST method.
Results. It was ascertained that the expression of microRNA-125b-5p in the blood of pregnant women with
FGR was statistically significantly lower (12.3 (8.9; 13.8)) than that in women with physiological pregnancy
(8.1 (6.6; 9.1)) (p=0.011). The magnitude of expression change (fold change) for microRNA-125b-5p was 5.25.
Conclusion. The findings indicate a change in the microRNA-125b-5p expression levels in the pregnant women with FGR versus the women with uncomplicated pregnancy. The role of micro-RNA-125b-5p in the genesis
of FGR can be explained by the ability of this microRNA to affect the vascular endothelium, including the placental vasculature, disrupting the processes of endothelium-dependent relaxation, angiogenesis, endothelial cell proliferation, and other functions, including the regulation of platelet adhesion and aggregation.

Keywords

microRNA
fetal growth restriction
placenta
pregnancy complications
epigenetic regulation

References

  1. American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins - Obstetrics and the Society for Maternal-Fetal Medicin. ACOG Practice bulletin no. 204: fetal growth restriction. Obstet. Gynecol. 2019; 133(2): e97-109. https://dx.doi.org/10.1097/AOG.0000000000003070.
  2. Salafia C.M., Minior V.K., Pezzullo J.C., Popek E.J., Rosenkrantz T.S., Vintzileos A.M. Intrauterine growth restriction in infants of less than thirty-two weeks’ gestation: associated placental pathologic features. Am. J. Obstet. Gynecol. 1995; 173(4): 1049-57. https://dx.doi.org/10.1016/0002-9378(95)91325-4.
  3. Lai E.C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002; 30(4): 363-4. https://dx.doi.org/10.1038/ng865.
  4. Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006; 6(11): 857-66. https://dx.doi.org/10.1038/nrc1997.
  5. Ширшова А.Н., Аушев В.Н., Филипенко М.Л., Кушлинский Н.Е. МикроРНК при онкологических заболеваниях. Молекулярная медицина. 2015; 2: 4-12. [Shirshova A.N., Aushev V.N., Filipenko M.L., Kushlinskii N.E. MicroRNAs in oncological diseases. Molekulyarnaya Meditsina/Molecular medicine. 2015; 2: 4-12. (in Russian)].
  6. Ивкин Д.Ю., Лисицкий Д.С., Захаров Е.А., Любишин М.М., Карпов А.А., Буркова Н.В., Оковитый С.В., Тюканин А.И. МикроРНК как перспективные диагностические и фармакологические агенты. Астраханский медицинский журнал. 2015; 10(4): 8-24. [Ivkin D.Y., Lisitskiy D.S., Zakharov E.A., Lubishin M.M., Karpov A.A., Burkova N.V. et al. MicroRNA as perspective diagnostic and pharmacological agents. Astrahanskij medicinskij zhurnal/Astrakhan medical journal. 2015; 10(4): 8-24. (in Russian)].
  7. Ludwig N., Leidinger P., Becker K., Backes C., Fehlmann T., Pallasch C. et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016; 44(8): 3865-77. https://dx.doi.org/10.1093/nar/gkw116.
  8. Низяева Н.В., Кан Н.Е., Тютюнник В.Л., Ломова Н.А., Наговицына М.Н., Прозоровская К.Н., Щеголев А.И. МикроРНК как важные диагностичеcкие предвестники развития акушерской патологии. Вестник Российской академии медицинских наук. 2015; 70(4): 484-92. [Nizyaeva N.V., Kan N.E., Tyutyunnik V.L., Lomova N.A., Nagovitsyna M.N., Prozorovskaya K.N., Schegolev A.I. MicroRNAs as an important precursors of diagnostic obstetric pathology. Vestnik Rossiiskoi akademii meditsinskikh nauk/Annals of the Russian Academy of Medical Sciences. 2015; 70(4): 484-92. (in Russian)]. https://dx.doi.org/10.15690/vramn.v70.i4.1416.
  9. Hudson T.J., Anderson W., Artez A., Barker A.D., Bell C., Bernabé R.R. et al. International Cancer Genome Consortium. International network of cancer genome projects. Nature. 2010; 464(7291): 993-8. https://dx.doi.org/10.1038/nature08987.
  10. Enquobahrie D.A., Abetew D.F., Sorensen T.K., Willoughby D., Chidambaram K., Williams M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011; 204(2): 178 . e12-21. https://dx.doi.org/10.1016/j.ajog.2010.09.004.
  11. Mayor-Lynn K., Toloubeydokhti T., Cruz A.C., Chegini N. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod. Sci. 2011; 18(1): 46-56. https://dx.doi.org/10.1177/1933719110374115.
  12. Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N. et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008; 3(9): e3148. https://dx.doi.org/10.1371/journal.pone.0003148.
  13. Tsochandaridis M., Nasca L., Toga C., Levy-Mozziconacci A. Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. Biomed. Res. Int. 2015; 2015: 294954. https://dx.doi.org/10.1155/2015/294954.
  14. Fenton T.R., Kim J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013; 13: 59. https://dx.doi.org/10.1186/1471-2431-13-59.
  15. Balcells I., Cirera S., Busk P.K. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 2011; 11: 70. https://dx.doi.org/10.1186/1472-6750-11-70.
  16. Busk P.K. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 2014; 15: 29. https://dx.doi.org/10.1186/1471-2105-15-29.
  17. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402-8. https://dx.doi.org/10.1006/meth.2001.1262.
  18. Cai X., Lu S., Zhang Z., Gonzalez C.M., Damania B., Cullen B.R. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA. 2005; 102(15): 5570-5. https://dx.doi.org/10.1073/pnas.0408192102.
  19. Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013; 304(8): E836-43. https://dx.doi.org/10.1152/ajpendo.00660.2012.
  20. Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W. Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015; 66(4): 793-9. https://dx.doi.org/10.1161 hypertensionaha.115.05645.
  21. Gródecka-Szwajkiewicz D., Ulańczyk Z., Zagrodnik E., Łuczkowska K., Rogińska D., Kawa M.P. et al. Differential secretion of angiopoietic factors and expression of microRNA in umbilical cord blood from healthy appropriate-for-gestational-age preterm and term newborns – in search of biomarkers of angiogenesis-related processes in preterm birth. Int. J. Mol. Sci. 2020; 21(4): 1305. https://dx.doi.org/10.3390/ijms21041305.
  22. Li D., Yang P., Xiong Q., Song X., Yang X., Liu L. et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J. Hypertens. 2010; 28(8): 1646-54. https://dx.doi.org/10.1097/HJH.0b013e32833a4922.
  23. Гусар В.А., Тимофеева А.В., Кан Н.Е., Чаговец В.В., Ганичкина М.Б., Франкевич В.Е. Профиль экспрессии плацентарных микроРНК – регуляторов окислительного стресса при синдроме задержки роста плода. Акушерство и гинекология. 2019; 1: 74-80. [Gusar V.A., Timofeeva A.V., Kan N.E., Chagovets V.V., Ganichkina M.B., Frankevich V.E. The expression profile of placental microRANs as regulators of oxidative stress in fetal growth restriction. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2019; 1: 74-80. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.1.74-80.
  24. Yu Q., Lu Z., Tao L., Yang L., Guo Y., Yang Y. et al. ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cell. Physiol. Biochem. 2015; 36(4): 1539-51.https://dx.doi.org/10.1159/000430317.
  25. Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Cardiovascular and cerebrovascular disease associated microRNAs are dysregulated in placental tissues affected with gestational hypertension, preeclampsia and intrauterine growth restriction. PLoS One. 2015; 10(9): e0138383.https://dx.doi.org/10.1371/journal.pone.0138383.
  26. Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016; 137: 126-40. https://dx.doi.org/10.1016/j.thromres.2015.11.032.

Received 16.09.2020

Accepted 25.12.2020

About the Authors

Natalia B. Kuznetsova, Dr. Med. Sci., Professor at the Department of Simulation education, RostSMU. Tel.: +7-928-770-97-62. E-mail: lauranb@inbox.ru.
29 Nahichevansky ave., Rostov-on-Don, 344022, Russia.
Irina O. Bushtyreva, Dr. Med. Sci., Full Professor, Clinic of Professor Bushtyreva. Tel.: +7(863)288-00-00. E-mail: kio4@mail.ru.
58/7A Sobornyi ave., Rostov-on-Don, 344010, Russia.
Ekaterina A. Zabanova, Postgraduate at the Department of Simulation education, RostSMU. Tel.: +7(918)566-88-25. E-mail: rock-fe@mail.ru.
29 Nahichevansky ave., Rostov-on-Don, 344022, Russia.
Elena V. Butenko, Cand. Bio. Sci., Associate Professor at the Department of Genetics, Academy of Biology and Biotechnologies of SFedU.
Tel.: +7(909)420-22-23. E-mail: evbutenko@sfedu.ru. 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
Inna O. Pokudina, Cand. Bio. Sci., Senior researcher at the Laboratory of Biomedicine, Academy of Biology and Biotechnologies of SFedU.
Tel.: +7(918)504-56-50. E-mail: ipokudina@sfedu.ru. 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
Tatiana P. Shkurat, Dr. Bio. Sci., Full Professor, Director of Research Institute of Biology of SFedU. Tel.: +7(863)243-38-85. E-mail: tshkurat@sfedu.ru.
194/1 Stachki ave., Rostov-on-Don, 344090, Russia.

For citation: Bushtyreva I.O., Kuznetsova N.B., Zabanova E.A., Butenko E.V., Pokudina I.O., Shkurat T.P. Placenta-specific micro-RNA expression in fetal growth restriction.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 2: 128-134 (in Russian)
https://dx.doi.org/10.18565/aig.2021.2.128-134

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.