Cell-free components of malignant ascites and their potential role in effective therapy for serous ovarian cancer

Slonov A.V., Shender V.O., Aleshikova O.I., Gerfanova E.V., Babaeva N.A., Ashrafyan L.A., Sukhikh G.T.

1) Clinical Hospital No. 123, Lopukhin Federal Research and Clinical Centre for Physical and Chemical Medicine of Federal Biological Agency, Odintsovo, Russia; 2) Lopukhin Federal Research and Clinical Centre for Physical and Chemical Medicine of Federal Biological Agency, Moscow, Russia; 3) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

Ovarian cancer is a malignant neoplasm characterized by the highest mortality rate of all gynecological cancers due to the fact that it is usually diagnosed at a late stage. High-grade serous ovarian cancer is more often associated with ascites formation. Malignant ascites appears to provide a microenvironment that promotes ovarian cancer progression.
The data of the Russian and foreign studies give insight into the numerous components of ascites. Malignant ascites contains not only different cell populations but also cell-free components involved in forming a microenvironment for tumor cells and promoting their progression (integrins, cytokines and growth factors such as VEGF, IL-6 and IL-8 that cause angiogenesis, invasion and chemoresistance). Cell-free factors, which are known to be activated in ascites in ovarian cancer, can induce epithelial-mesenchymal transition, and this may indicate a more aggressive course of the disease.
Conclusion: The mapping of proteins and different metabolites of malignant ascites in ovarian cancer is expected to facilitate a more profound understanding of the signal transduction networks which vary with disease progression. The study of malignant ascites and the associated microenvironment that promotes the initiation of tumor cell growth and proliferation in ovarian cancer may change the tactics of therapy and improve its efficacy.

Authors’ contributions: Slonov A.V., Shender V.O. – developing the design of the study; Aleshikova O.I., Gerfanova E.V., Babaeva N.A. – writing and editing the text; Ashrafyan L.A. – organization of the study and developing the concept of the study.
Conflicts of interest: Authors declare lack of the possible conflicts of interests.
Funding: The study was conducted without sponsorship.
Acknowledgements: The authors express their gratitude to M.A. Lagarkova, Dr. Bio. Sci., Prof., Corresponding Member of RAS, CEO, Lopukhin Federal Research and Clinical Centre for Physical-Chemical Medicine, for her assistance in the preparation of the article.
For citation: Slonov A.V., Shender V.O., Aleshikova O.I., Gerfanova E.V., Babaeva N.A., Ashrafyan L.A., Sukhikh G.T. Cell-free components of malignant ascites and their potential role in effective therapy for serous ovarian cancer.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (3): 13-20 (in Russian)
https://dx.doi.org/10.18565/aig.2024.309

Keywords

ovarian cancer
ascites
tumor cells
tumor microenvironment

References

  1. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015; 136(5): E359-E386. https://dx.doi.org/10.1002/ijc.29210.
  2. Tothill R.W., Tinker A.V., George J., Brown R., Fox S.B., Lade S. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 2008; 14(16): 5198-208. https://dx.doi.org/10.1158/1078-0432.CCR-08-0196.
  3. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474(7353): 609-15. https://dx.doi.org/10.1038/nature10166.
  4. Ayantunde A.A., Parsons S.L. Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann. Oncol. 2007; 18(5): 945-9. https://dx.doi.org/10.1093/annonc/mdl499.
  5. Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front. Oncol. 2013; 3: 256. https://dx.doi.org/10.3389/fonc.2013.00256.
  6. Krugmann J., Schwarz C.L., Melcher B., Sterlacci W., Ozalinskaite A., Lermann J. et al. Malignant ascites occurs most often in patients with high-grade serous papillary ovarian cancer at initial diagnosis: a retrospective analysis of 191 women treated at Bayreuth Hospital, 2006-2015. Arch. Gynecol. Obstet. 2019; 299(2): 515-23. https://dx.doi.org/10.1007/s00404-018-4952-9.
  7. Mikula-Pietrasik J., Uruski P., Szubert S., Szpurek D., Sajdak S., Tykarski A. et al. Malignant ascites determine the transmesothelial invasion of ovarian cancer cells. Int. J. Biochem. Cell Biol. 2017; 92: 6-13. https://dx.doi.org/10.1016/j.biocel.2017.09.002.
  8. Vergote I., Trope C.G., Amant F., Kristensen G.B., Ehlen T., Johnson N. et al.; European Organization for Research and Treatment of Cancer-Gynaecological Cancer Group; NCIC Clinical Trials Group. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N. Engl. J. Med. 2010; 363(10): 943-53. https://dx.doi.org/10.1056/NEJMoa0908806.
  9. du Bois A., Reuss A., Pujade-Lauraine E., Harter P., Ray-Coquard I., Pfisterer J. Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzinom (AGO-OVAR) and the Groupe d’Investigateurs Nationaux Pour les Etudes des Cancers de l’Ovaire (GINECO). Cancer. 2009; 115(6): 1234-44. https://dx.doi.org/10.1002/cncr.24149.
  10. Coleman R.L., Monk B.J., Sood A.K., Herzog T.J. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat. Rev. Clin. Oncol. 2013; 10(4): 211-24. https://dx.doi.org/10.1038/nrclinonc.2013.5.
  11. Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front. Oncol. 2013; 3: 256. https://dx.doi.org/10.3389/fonc.2013.00256.
  12. Loret N., Denys H., Tummers P., Berx G. The role of epithelial-to-mesenchymal plasticity in ovarian cancer progression and therapy resistance. Cancers (Basel). 2019; 11(6): 838. https://dx.doi.org/10.3390/cancers11060838.
  13. Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009; 119(6): 1420-8. https://dx.doi.org/10.1172/JCI39104.
  14. Thiery J.P., Acloque H., Huang R.Y.J.J., Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139(5): 871-90. https://dx.doi.org/10.1016/j.cell.2009.11.007.
  15. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646-74. https://dx.doi.org/10.1016/j.cell.2011.02.013.
  16. Sennino B., Ishiguro-Oonuma T., Wei Y., Naylor R.M., Williamson C.W., Bhagwandin V. et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012; 2(3): 270-87. https://dx.doi.org/10.1158/2159-8290.CD-11-0240.
  17. Du F., Wu X., Liu Y., Wang T., Wang T., Qi X. et al. Acquisition of paclitaxel resistance via PI3K-dependent epithelial-mesenchymal transition in A2780 human ovarian cancer cells. Oncol. Rep. 2013; 30(3): 1113-8. https://dx.doi.org/10.3892/or.2013.2567.
  18. Haslehurst A.M., Koti M., Dharsee M., Nuin P., Evans K., Geraci J. et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012; 12: 91. https://dx.doi.org/10.1186/1471-2407-12-91.
  19. Izumiya M., Kabashima A., Higuchi H., Igarashi T., Sakai G., Iizuka H. et al. Chemoresistance is associated with cancer stem cell-like properties and epithelial-to-mesenchymal transition in pancreatic cancer cells. Anticancer Res. 2012; 32(9): 3847-53.
  20. Thomson S., Buck E., Petti F. Griffin G., Brown E., Ramnarine N. et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 2005; 65(20): 9455-62. https://dx.doi.org/10.1158/0008-5472.CAN-05-1058.
  21. Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J. et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PLoS One. 2012; 7(10): e46858. https://dx.doi.org/10.1371/journal.pone.0046858.
  22. Ahmed N., Thompson E.W., Quinn M.A. Epithelial–mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J. Cell. Physiol. 2007; 213(3): 581-8. https://dx.doi.org/10.1002/jcp.21240.
  23. Ahmed N., Maines-Bandiera S., Quinn M.A., Unger W.G., Dedhar S., Auersperg N. Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am. J. Physiol. Cell Physiol. 2006; 290(6): C1532-C1542. https://dx.doi.org/10.1152/ajpcell.00478.2005.
  24. Lengyel E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010; 177(3): 1053-64. https://dx.doi.org/10.2353/ajpath.2010.100105.
  25. Veatch A.L., Carson L.F., Ramakrishnan S. Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumor cells. Int. J. Cancer. 1994; 58(3): 393-9. https://dx.doi.org/10.1002/ijc.2910580315.
  26. Moreno-Bueno G., Peinado H., Molina P., Olmeda D., Cubillo E., Santos V. et al. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat. Protoc. 2009; 4(11): 1591-613. https://dx.doi.org/10.1038/nprot.2009.152.
  27. Sawada K., Mitra A.K., Radjabi A.R., Bhaskar V., Kistner E.O., Tretiakova M. et al. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res. 2008; 68(7): 2329-39. https://dx.doi.org/10.1158/0008-5472.CAN-07-5167.
  28. Cowden Dahl K.D., Symowicz J., Ning Y., Gutierrez E., Fishman D.A., Adley B.P. et al. Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells. Cancer Res. 2008; 68(12): 4606-13. https://dx.doi.org/10.1158/0008-5472.CAN-07-5046.
  29. Garrison R.N., Galloway R.H., Heuser L.S. Mechanisms of malignant ascites production. J. Surg. Res. 1987; 42(2): 126-32. https://dx.doi.org/10.1016/0022-4804(87)90109-0.
  30. Becker G., Galandi D., Blum H.E. Malignant ascites: systematic review and guideline for treatment. Eur. J. Cancer. 2006; 42(5): 589-97. https://dx.doi.org/10.1016/j.ejca.2005.11.018.
  31. Belotti D., Paganoni P., Manenti L., Garofalo A., Marchini S., Taraboletti G. et al. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res. 2003; 63(17):5224-9.
  32. Fang X., Yu S., Bast R.C., Liu S., Liu S., Xu H.J. et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem. 2004; 279(10): 9653-61. https://dx.doi.org/10.1074/jbc.M306662200.
  33. Lee H.K., Chae H.S., Kim J.S., Kim H.K., Cho Y.S., Rho S.Y. et al. Vascular endothelial growth factor levels in ascites between chemonaive and chemotreated patients. Yonsei Med. J. 2008; 49(3): 429-35. https://dx.doi.org/10.3349/ymj.2008.49.3.429.
  34. Huang H., Li Y.J., Lan C.Y., Huang Q.D., Feng Y.L., Huang Y.W. et al. Clinical significance of ascites in epithelial ovarian cancer. Neoplasma. 2013; 60(5): 546-52. https://dx.doi.org/10.4149/neo_2013_071.
  35. Kipps E., Tan D.S., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat. Rev. Cancer. 2013; 13(4): 273-82. https://dx.doi.org/10.1038/nrc3432.
  36. Adam R.A., Adam Y.G. Malignant ascites: past, present, and future. J. Am. Coll. Surg. 2004; 198(6): 999-1011. https://dx.doi.org/10.1016/j.jamcollsurg.2004.01.035.
  37. Hirabayashi K., Graham J. Genesis of ascites in ovarian cancer. Am. J. Obstet. Gynecol. 1970; 106(4): 492-7. https://dx.doi.org/10.1016/0002-9378(70)90031-1.
  38. Gawrychowski K., Szewczyk G., Skopińska-Różewska E., Małecki M., Barcz E., Kamiński P. et al. The angiogenic activity of ascites in the course of ovarian cancer as a marker of disease progression. Dis. Markers. 2014; 2014: 683757. https://dx.doi.org/10.1155/2014/683757.
  39. Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006; 2(3): 213-9. https://dx.doi.org/10.2147/vhrm.2006.2.3.213.
  40. Zhan N., Dong W.G., Wang J. The clinical significance of vascular endothelial growth factor in malignant ascites. Tumor Biol. 2016; 37(3): 3719-25. https://dx.doi.org/10.1007/s13277-015-4198-0.
  41. Santin A.D., Hermonat P.L., Ravaggi A., Cannon M.J., Pecorelli S., Parham G.P. Secretion of vascular endothelial growth factor in ovarian cancer. Eur. J. Gynaecol. Oncol. 1999; 20(3): 177-81.
  42. Balcan E., Demirkiran F., Aydin Y., Sanioglu C., Bese T., Arvas M. et al. Serum levels of epidermal growth factor, transforming growth factor, and c-erbB2 in ovarian cancer. Int. J. Gynecol. Cancer. 2012; 22(7): 1138-42. https://dx.doi.org/10.1097/IGC.0b013e31825b7dcc.
  43. Kim S., Kim B., Song Y.S. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 2016; 107(9): 1173-8. https://dx.doi.org/10.1111/cas.12987.
  44. Masoumi Moghaddam S., Amini A., Morris D.L., Pourgholami M.H. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012; 31(1-2): 143-62. https://dx.doi.org/10.1007/s10555-011-9337-5.
  45. Yabushita H., Shimazu M., Noguchi M., Kishida T., Narumiya H., Sawaguchi K. et al. Vascular endothelial growth factor activating matrix metalloproteinase in ascitic fluid during peritoneal dissemination of ovarian cancer. Oncol. Rep. 2003; 10(1): 89-95.
  46. Herr D., Sallmann A., Bekes I., Konrad R., Holzheu I., Kreienberg R. et al. VEGF induces ascites in ovarian cancer patients via increasing peritoneal permeability by downregulation of Claudin 5. Gynecol. Oncol. 2012; 127(1): 210-6. https://dx.doi.org/10.1016/j.ygyno.2012.05.002.
  47. Avraham R., Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 2011; 12(2): 104-17. https://dx.doi.org/10.1038/nrm3048.
  48. del Carmen M.G., Rizvi I., Chang Y., Moor A.C., Oliva E., Sherwood M. et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J. Natl. Cancer Inst. 2005; 97(20): 1516-24. https://dx.doi.org/10.1093/jnci/dji314.
  49. Psyrri A., Kassar M., Yu Z., Bamias A., Weinberger P.M., Markakis S. et al. Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clin. Cancer Res. 2005; 11(24 Pt. 1): 8637-43. https://dx.doi.org/10.1158/1078-0432.CCR-05-1436.
  50. Zeineldin R., Muller C.Y., Stack M.S., Hudson L.G. Targeting the EGF receptor for ovarian cancer therapy. J. Oncol. 2010; 2010: 414676. https://dx.doi.org/10.1155/2010/414676.
  51. Ellis L.M. Epidermal growth factor receptor in tumor angiogenesis. Hematol. Oncol. Clin. North Am. 2004; 18(5): 1007-21, viii. https://dx.doi.org/10.1016/j.hoc.2004.06.002.
  52. Alper O., Bergmann-Leitner E.S., Bennett T.A., Hacker N.F., Stromberg K., Stetler-Stevenson W.G. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl. Cancer Inst. 2001; 93(18): 1375-84. https://dx.doi.org/10.1093/jnci/93.18.1375.
  53. Posadas E.M., Liel M.S., Kwitkowski V., Minasian L., Godwin A.K., Hussain M.M. et al. A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer. Cancer. 2007; 109(7): 1323-30. https://dx.doi.org/10.1002/cncr.22545.
  54. Lassus H., Sihto H., Leminen A., Joensuu H., Isola J., Nupponen N.N. et al. Gene amplification, mutation, and protein expression of EGFR and mutations of ERBB2 in serous ovarian carcinoma. J. Mol. Med. (Berl.). 2006; 84(8): 671-81. https://dx.doi.org/10.1007/s00109-006-0054-4.
  55. Caswell P.T., Chan M., Lindsay A.J., McCaffrey M.W., Boettiger D., Norman J.C. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenviron­ments. J. Cell Biol. 2008; 183(1): 143-55. https://dx.doi.org/10.1083/jcb.200804140.
  56. Guarino M., Rubino B., Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007; 39(3): 305-18. https://dx.doi.org/10.1080/00313020701329914.
  57. Hoxhaj G., Manning B.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer. 2020; 20(2): 74-88. https://dx.doi.org/10.1038/s41568-019-0216-7.
  58. Ghoneum A., Said N. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: implications for targeted therapeutics. Cancers (Basel). 2019; 11(7): 949. https://dx.doi.org/10.3390/cancers11070949.
  59. Takada Y., Ye X., Simon S. The integrins. Genome Biol. 2007; 8(5): 215. https://dx.doi.org/10.1186/gb-2007-8-5-215.
  60. Ginsberg M.H., Partridge A., Shattil S.J. Integrin regulation. Curr. Opin. Cell Biol. 2005; 17(5): 509-16. https://dx.doi.org/10.1016/j.ceb.2005.08.010.
  61. Hynes R.O. Integrins: bidirectional, allosteric signaling machines. Cell. 2002; 110(6): 673-87. https://dx.doi.org/10.1016/s0092-8674(02)00971-6.
  62. Schwartz M.A., Schaller M.D., Ginsberg M.H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 1995; 11: 549-99. https://dx.doi.org/10.1146/annurev.cb.11.110195.003001.
  63. Harburger D.S., Calderwood D.A. Integrin signalling at a glance. J. Cell Sci. 2009; 122(Pt. 2): 159-63. https://dx.doi.org/10.1242/jcs.018093.
  64. Schoenwaelder S.M., Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr. Opin. Cell Biol. 1999; 11(2): 274-86. https://dx.doi.org/10.1016/s0955-0674(99)80037-4.
  65. Hamidi H., Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer. 2018; 18(9): 533-48. https://dx.doi.org/10.1038/s41568-018-0038-z.
  66. Kobayashi M., Sawada K., Kimura T. Potential of integrin inhibitors for treating ovarian cancer: a literature review. Cancers (Basel). 2017; 9(7): 83. https://dx.doi.org/10.3390/cancers9070083.
  67. Uruski P., Mikula-Pietrasik J., Pakula M., Budkiewicz S., Drzewiecki M., Gaiday A.N. et al. Malignant ascites promote adhesion of ovarian cancer cells to peritoneal mesothelium and fibroblasts. Int. J. Mol. Sci. 2021; 22(8): 4222. https://dx.doi.org/10.3390/ijms22084222.
  68. Thériault C., Pinard M., Comamala M., Migneault M., Beaudin J., Matte I. et al. MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecol. Oncol. 2011; 121(3): 434-43. https://dx.doi.org/10.1016/j.ygyno.2011.02.020.
  69. Lane D., Matte I., Rancourt C., Piché A. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients. BMC Cancer. 2011; 11: 210. https://dx.doi.org/10.1186/1471-2407-11-210.
  70. Matte I., Lane D., Laplante C., Rancourt C., Piché A. Profiling of cytokines in human epithelial ovarian cancer ascites. Am. J. Cancer Res. 2012; 2(5): 566-80.
  71. Mills G.B., May C., McGill M., Roifman C.M., Mellors A. A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res. 1988; 48(5): 1066-71.
  72. Freedman R.S., Deavers M., Liu J., Wang E. Peritoneal inflammation - a microenvironment for Epithelial Ovarian Cancer (EOC) J. Transl. Med. 2004; 2(1): 23. https://dx.doi.org/10.1186/1479-5876-2-23.
  73. Liu F., Kong X., Dou Q., Ye J., Xu D., Shang H. et al. Evaluation of tumor markers for the differential diagnosis of benign and malignant ascites. Ann. Hepatol. 2014; 13(3): 357-63.
  74. Lane D., Matte I., Garde-Granger P., Laplante C., Carignan A., Rancourt C. et al. Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers. BMC Cancer. 2015; 15: 492. https://dx.doi.org/10.1186/s12885-015-1511-7.
  75. Matte I., Garde-Granger P., Bessette P., Piché A. Ascites from ovarian cancer patients stimulates MUC16 mucin expression and secretion in human peritoneal mesothelial cells through an Akt-dependent pathway. BMC Cancer. 2019; 19(1): 406. https://dx.doi.org/10.1186/s12885-019-5611-7.
  76. Jia D., Nagaoka Y., Katsumata M., Orsulic S. Inflammation is a key contributor to ovarian cancer cell seeding. Sci. Rep. 2018; 8(1): 12394. https://dx.doi.org/10.1038/s41598-018-30261-8.
  77. Browning L., Patel M.R., Horvath E.B., Tawara K., Jorcyk C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res. 2018; 10: 6685-93. https://dx.doi.org/10.2147/CMAR.S179189.
  78. Giuntoli R.L. 2nd., Webb T.J., Zoso A., Rogers O., Diaz-Montes T.P., Bristow R.E. et al. Ovarian cancer-associated ascites demonstrates altered immune environment: Implications for antitumor immunity. Anticancer Res. 2009; 29(8): 2875-84.
  79. Choy E., Rose-John S. Interleukin-6 as a multifunctional regulator: inflammation, immune response, and fibrosis. J. Scleroderma Relat. Disord. 2017; 2(Suppl. 2): S1-S5. https://dx.doi.org/10.5301/jsrd.5000265.
  80. Yin X., Wu L., Yang H., Yang H. Prognostic significance of neutrophil-lymphocyte ratio (NLR) in patients with ovarian cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(45): e17475. https://dx.doi.org/10.1097/MD.0000000000017475.
  81. Alldredge J., Flies D.B., Higuchi T., Ma T., Adams S.F. Impaired interleukin-10 signaling and ovarian cancer growth in the peritoneal cavity. J. Clin. Oncol. 2014; 32(15_suppl): e22094. https://dx.doi.org/10.1200/jco.2014.32.15_suppl.e22094.
  82. Onallah H., Davidson B., Reich R. Diverse effects of lysophosphatidic acid receptors on ovarian cancer signaling pathways. J. Oncol. 2019; 2019: 7547469. https://dx.doi.org/10.1155/2019/7547469.
  83. Yung Y.C., Stoddard N.C., Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J. Lipid Res. 2014; 55(7): 1192-214. https://dx.doi.org/10.1194/jlr.R046458.
  84. De La Franier B., Thompson M. Detection of the ovarian cancer biomarker lysophosphatidic acid in serum. Biosensors (Basel). 2020; 10(2): 13. https://dx.doi.org/10.3390/bios10020013.
  85. Sedláková I., Vávrová J., Tošner J., Hanousek L. Lysophosphatidic acid (LPA) - a perspective marker in ovarian cancer. Tumour Biol. 2011; 32(2): 311-6. https://dx.doi.org/10.1007/s13277-010-0123-8.
  86. Xu Y., Shen Z., Wiper D.W., Wu M., Morton R.E., Elson P. et al. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998; 280(8): 719-23. https://dx.doi.org/10.1001/jama.280.8.719.
  87. Said N.A., Elmarakby A.A., Imig J.D., Fulton D.J., Motamed K. SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia. 2008; 10(10): 1092-104. https://dx.doi.org/10.1593/neo.08672.
  88. Cai Q., Zhao Z., Antalis C., Yan L., Del Priore G., Hamed A.H. et al. Elevated and secreted phospholipase A2 activities as new potential therapeutic targets in human epithelial ovarian cancer. FASEB J. 2012; 26(8): 3306-20. https://dx.doi.org/10.1096/fj.12-207597.
  89. Schulte R.R., Linkous A.G., Hallahan D.E., Yazlovitskaya E.M. Cytosolic phospholipase A2 as a molecular target for the radiosensitization of ovarian cancer. Cancer Lett. 2011; 304(2): 137-43. https://dx.doi.org/10.1016/j.canlet.2011.02.015.
  90. Zhao Y., Cui L., Pan Y., Shao D., Zheng X., Zhang F. et al. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer. Cell Prolif. 2017; 50(6): e12393. https://dx.doi.org/10.1111/cpr.12393.
  91. Reinartz S., Finkernagel F., Adhikary T., Rohnalter V., Schumann T., Schober Y. et al. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome. Genome Biol. 2016; 17(1): 108. https://dx.doi.org/10.1186/s13059-016-0956-6.
  92. Hong G., Baudhuin L.M., Xu Y. Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Lett. 1999; 460(3): 513-8. https://dx.doi.org/10.1016/s0014-5793(99)01400-3.
  93. Schwartz B.M., Hong G., Morrison B.H., Wu W., Baudhuin L.M., Xiao Y.J. et al. Lysophospholipids increase interleukin-8 expression in ovarian cancer cells. Gynecol. Oncol. 2001; 81(2): 291-300. https://dx.doi.org/10.1006/gyno.2001.6124.
  94. Dai L., Liu Y., Xie L., Wu X., Qiu L., Di W. Sphingosine kinase 1/sphingosine-1-phosphate (S1P)/S1P receptor axis is involved in ovarian cancer angiogenesis. Oncotarget. 2017; 8(43): 74947-61. https://dx.doi.org/10.18632/oncotarget.20471.
  95. Zhang H., Wang Q., Zhao Q., Di W. MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1. J. Ovarian Res. 2013; 6(1): 84. https://dx.doi.org/10.1186/1757-2215-6-84.
  96. White M.D., Chan L., Antoon J.W., Beckman B.S. Targeting ovarian cancer and chemoresistance through selective inhibition of sphingosine kinase-2 with ABC294640. Anticancer Res. 2013; 33(9): 3573-9.
  97. Doherty J.R., Cleveland J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 2013; 123(9): 3685-92. https://dx.doi.org/10.1172/JCI69741.
  98. Huang L.L., Xia H.H.X., Zhu S.L. Ascitic fluid analysis in the differential diagnosis of ascites: focus on cirrhotic ascites. J. Clin. Transl. Hepatol. 2014; 2(1): 58-64. https://dx.doi.org/10.14218/JCTH.2013.00010.
  99. Liberti M.V., Locasale J.W. The Warburg Effect: how does it benefit cancer cells? Trends Biochem. Sci. 2016; 41(3): 211-8. https://dx.doi.org/10.1016/j.tibs.2015.12.001.
  100. Sorrin A.J., Kemal Ruhi M., Ferlic N.A., Karimnia V., Polacheck W.J., Celli J.P. et al. Photodynamic therapy and the biophysics of the tumor microenvironment. Photochem. Photobiol. 2020; 96(2): 232-59. https://dx.doi.org/10.1111/php.13209.
  101. Nakamura K., Sawada K., Kobayashi M., Miyamoto M., Shimizu A., Yamamoto M. et al. Role of the exosome in ovarian cancer progression and its potential as a therapeutic target. Cancers (Basel). 2019; 11(8): 1147. https://dx.doi.org/10.3390/cancers11081147.
  102. Feng W., Dean D.C., Hornicek F.J., Shi H., Duan Z. Exosomes promote pre-metastatic niche formation in ovarian cancer. Mol. Cancer. 2019; 18(1): 124. https://dx.doi.org/10.1186/s12943-019-1049-4.

Received 05.12.2024

Accepted 10.02.2025

About the Authors

Andrey V. Slonov, PhD, Chief Physician, Clinical Hospital No.123 of Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia,
143007, Russia, Moscow Region, Odintsovo, Krasnogorskoye Shosse, 15, dr.slon83@gmail.com, https://orcid.org/0000-0003-4416-7315
Victoria O. Shender, PhD (in Chemistry), Head of the Laboratory of Molecular Oncology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine
of FMBA of Russia, 119435, Russia, Moscow, Malaya Pirogovskaya str., 1a, shender_vika@mail.ru, https://orcid.org/0000-0001-9156-2938
Olga I. Aleshikova, PhD, Senior Researcher at the Institute of Oncogynecology and Mammology, oncologist at the Oncological Department of Surgical Methods of Treatment, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow,
Ac. Oparin str., 4, olga.aleshikova@gmail.com, https://orcid.org/0000-0002-2957-3940
Evgeniya V. Gerfanova, PhD, oncologist-gynecologist at the Institute of Oncogynecology and Mammology, Department of Innovative Oncology and Gynecology, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(916)752-71-87, evgeniyagerf@gmail.com, e_gerfanova@oparina4.ru, https://orcid.org/0000-0001-9092-7149
Nataliya A. Babaeva, Dr. Med. Sci., Leading Researcher at the Institute of Oncogynecology and Mammology, oncologist at the Oncological Department of Surgical Methods
of Treatment, V.I. Kulakov National Medical Research Center of the Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, n_babaeva@oparina4.ru,
https://orcid.org/0000-0002-4654-9512
Lev A. Ashrafyan, Academician of the Russian Academy of Sciences, Professor, Dr. Med. Sci., Head of the Institute of Oncogynecology and Mammology,
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow,
Ac. Oparin str., 4, levaa2004@yahoo.com, https://orcid.org/0000-0001-6396-4948
Gennady T. Sukhikh, Dr. Med. Sci., Professor, Academician of the RAS, Director of the Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, sekretariat@oparina4.ru, https://orcid.org/0000-0002-7712-1260
Corresponding author: Evgeniya V. Gerfanova, evgeniyagerf@gmail.com

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.