Association between xenobiotic detoxification system gene polymorphisms and hormone replacement therapy efficacy in women with premature ovarian insufficiency

Averkova V.G., Donnikov A.E., Yureneva S.V.

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia

Objective: To evaluate the association between xenobiotic detoxification system gene polymorphisms and hormone replacement therapy (HRT) efficacy in patients with premature ovarian insufficiency (POI).
Materials and methods: This study included 83 women with POI who exhibited persistent symptoms of estrogen deficiency while receiving HRT E2/DYD 2 mg/10 mg. The participants were divided into two groups: group 1 (n=23) included patients with signs of severe estrogen deficiency (GCS score > 20 and E2 blood level <150 pmol/l) and group 2 (n=60) included those with a GCS score < 20 and an E2 blood level >150 pmol/l. Genotyping was performed by real-time PCR. The distribution frequencies of alleles and genotypes for the polymorphisms were analyzed in both groups. The χ² test assessed the significance of the differences (p). The strength of the association between features was evaluated using the odds ratio (OR).
Results: Allele A of the A313G polymorphism of GSTP1 and allele C of the C341T polymorphism of GSTP1 were associated with severe estrogen deficiency in patients receiving HRT E2/DYD 2 mg/10 mg (OR=2.99, 95% CI 1.07–8.33, p=0.03; OR=7.43, 95% CI 0.96–57.52, p=0.03). The AC haplotype (risk haplotype) for the GSTP1 A313G (Ile105Val) and GSTP1 C341T (Ala114Val) polymorphisms was significantly more frequently detected in patients with severe estrogen deficiency during HRT (69.6% in group 1 versus 43.3% in group 2, p=0.049, OR=2.99, 95% CI 0.97–9.80). The -341 C/C genotype was identified as a marker of the risk haplotype based on haplotype and individual genotype correspondence assessment.
Conclusion: GSTP1 gene polymorphisms play a significant role in the response to HRT in patients with POI, likely due to their influence on the regulation of E2 detoxification processes.

Authors' contributions: Averkova V.G. – obtaining data for analysis, material processing and analyzing, statistical analysis, drafting of the manuscript; Donnikov A.E. – editing of the manuscript; Yureneva S.V. – conception and design of the study, editing of the manuscript.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: There was no funding for this study.
Ethical Approval: The study was reviewed and approved by the Research Ethics Committee of the V.I. Kulakov NMRC for OG&P (Ref. No: 1 of 07 February 2019).
Patient Consent for Publication: All patients provided informed consent for the publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available upon request from the corresponding author after approval from the principal investigator.
For citation: Averkova V.G., Donnikov A.E., Yureneva S.V. Association between xenobiotic detoxification system gene polymorphisms and hormone replacement therapy efficacy in women with premature ovarian insufficiency.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (10): 113-120 (in Russian)
https://dx.doi.org/10.18565/aig.2024.243

Keywords

premature ovarian insufficiency
hormone replacement therapy
estrogen deficiency
gene variants
single nucleotide polymorphism

References

  1. Panay N., Anderson R., Bennie A., Cedars M., Davies M., Ee C. et al. O-111 Premature ovarian insufficiency: new data and updated guidance. Hum. Reprod. 2024; 39(Suppl._1): i62. https://dx.doi.org/10.1093/humrep/deae108.122.
  2. Li M., Zhu Y., Wei J., Chen L., Chen S., Lai D. The global prevalence of premature ovarian insufficiency: a systematic review and meta-analysis. Climacteric. 2023; 26(2): 95-102. https://dx.doi.org/10.1080/13697137.2022.2153033.
  3. Panay N., Anderson R.A., Nappi R.E., Vincent A.J., Vujovic S., Webber L. et al. Premature ovarian insufficiency: an International Menopause Society White Paper. Climacteric. 2020; 23(5): 426-46. https://dx.doi.org/10.1080/13697137.2020.1804547.
  4. Jayasena C.N., Devine K., Barber K., Comninos A.N., Conway G.S., Crown A. et al. Society for endocrinology guideline for understanding, diagnosing and treating female hypogonadism. Clin. Endocrinol. (Oxf.). 2024; 101(5): 409-42. https://dx.doi.org/10.1111/cen.15097.
  5. Аверкова В.Г., Юренева С.В. Анализ удовлетворенности лечением пациенток с преждевременной недостаточностью яичников. Акушерство и гинекология. 2022; 10: 83-92. [Averkova V.G., Yureneva S.V. Analysis of treatment satisfaction in patients with premature ovarian failure. Obstetrics and Gynecology. 2022; (10): 83-92. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.10.83-92.
  6. Кукес В.Г., Сычев Д.А., Раменская Г.В., Игнатьев И.В. Фармакогенетика системы биотрансформации и транспортеров лекарственных средств: от теории к практике. Биомедицина. 2007; 6: 29-47. [Kukes V.G., Sychev D.A., Ramenskaya G.V., Ignat’ev I.V. Pharmacogenetics of system of biotransformation and drugs transporters: from the theory to practice. Biomedicine. 2007; (6): 29-47. (in Russian)].
  7. Chenchula S., Atal S., Uppugunduri C.R.S. A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: a reality for future health care. Pharmacogenomics J. 2024; 24(2): 9. https://dx.doi.org/10.1038/s41397-024-00326-1.
  8. Zhou Z.W., Chen X.W., Sneed K.B., Yang Y.X., Zhang X., He Z.X. et al. Clinical association between pharmacogenomics and adverse drug reactions. Drugs. 2015; 75(6): 589-631. https://dx.doi.org/10.1007/s40265-015-0375-0.
  9. Thomas C.D., Johnson J.A. Pharmacogenetic factors affecting β-blocker metabolism and response. Expert Opin. Drug Metab. Toxicol. 2020; 16(10): 953-64. https://dx.doi.org/10.1080/17425255.2020.1803279.
  10. Asiimwe I.G., Pirmohamed M. Ethnic diversity and warfarin pharmacogenomics. Front. Pharmacol. 2022; 13: 866058. https://dx.doi.org/10.3389/fphar.2022.866058.
  11. Almazroo O.A., Miah M.K., Venkataramanan R. Drug metabolism in the liver. Clin. Liver Dis. 2017; 21(1): 1-20. https://dx.doi.org/10.1016/j.cld.2016.08.001.
  12. Cerne J.Z., Novakovic S., Frkovic-Grazio S., Pohar-Perme M., Stegel V., Gersak K. Estrogen metabolism genotypes, use of long-term hormone replacement therapy and risk of postmenopausal breast cancer. Oncol. Rep. 2011; 26(2): 479-85. https://dx.doi.org/10.3892/or.2011.1298.
  13. MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women. Breast Cancer Res. Treat. 2010; 119(2): 463-74. https://dx.doi.org/10.1007/s10549-009-0407-0.
  14. Miller V.M., Naftolin F., Asthana S., Black D.M., Brinton E.A., Budoff M.J. et al. The Kronos Early Estrogen Prevention Study (KEEPS): what have we learned? Menopause. 2019; 26(9): 1071-84. https://dx.doi.org/10.1097/GME.0000000000001326.
  15. European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI; Webber L., Davies M., Anderson R., Bartlett J., Braat D., Cartwright B. et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum. Reprod. 2016; 31(5): 926-37. https://dx.doi.org/10.1093/humrep/dew027.
  16. Moyer A.M., Miller V.M., Faubion S.S. Could personalized management of menopause based on genomics become a reality? Pharmacogenomics. 2016; 17(7): 659-62. https://dx.doi.org/10.2217/pgs.16.17.
  17. Potęga A. Glutathione-mediated conjugation of anticancer drugs: an overview of reaction mechanisms and biological significance for drug detoxification and bioactivation. Molecules. 2022; 27(16): 5252. https://dx.doi.org/10.3390/molecules27165252.
  18. Gatedee J., Pakakassama S., Muangman S., Pongstaporn W. Glutathione S-transferase P1 genotypes, genetic susceptibility and outcome of therapy in thai childhood acute lymphoblastic leukemia. Asian Pac. J. Cancer Prev. 2007; 8(2): 294-6.
  19. Dasgupta R.K., Adamson P.J., Davies F.E., Rollinson S., Roddam P.L., Ashcroft A.J. et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood. 2003; 102(7): 2345-50. https://dx.doi.org/10.1182/blood-2003-02-0444.
  20. Фетисова И.Н., Межинский С.С., Чаша Т.В., Ратникова С.Ю., Фетисов Н.С. Полиморфизм генов системы детоксикации. Вестник Ивановской медицинской академии. 2014; 19(4): 50-8. [Fetisova I.N., Mezhinskii S.S., Chasha T.V., Ratnikova S.Yu., Fetisov N.S. Gene polymorphism of detoxication system. Bulletin of Ivanovo State Medical Academy. 2014; 19(4): 50-8. (in Russian)].
  21. Garte S., Gaspari L., Alexandrie A.K., Ambrosone C., Autrup H., Autrup J.L. et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol. Biomarkers Prev. 2001; 10(12): 1239-48.
  22. Hajdinák P., Szabó M., Kiss E., Veress L., Wunderlich L., Szarka A. Genetic polymorphism of GSTP-1 affects cyclophosphamide treatment of autoimmune diseases. Molecules. 2020; 25(7): 1542. https://dx.doi.org/10.3390/molecules25071542.
  23. Attia D.H.S., Eissa M., Samy L.A., Khattab R.A. Influence of glutathione S transferase A1 gene polymorphism (-69C > T, rs3957356) on intravenous cyclophosphamide efficacy and side effects: a case-control study in Egyptian patients with lupus nephritis. Clin. Rheumatol. 2021; 40(2): 753-62. https://dx.doi.org/10.1007/s10067-020-05276-0.
  24. Ji M., Tang J., Zhao J., Xu B., Qin J., Lu J. Polymorphisms in genes involved in drug detoxification and clinical outcomes of anthracycline-based neoadjuvant chemotherapy in Chinese Han breast cancer patients. Cancer Biol. Ther. 2012; 13(5): 264-71. https://dx.doi.org/10.4161/cbt.18920.
  25. Sun N., Sun X., Chen B., Cheng H., Feng J., Cheng L. et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother. Pharmacol. 2010; 65(3): 437-46. https://dx.doi.org/10.1007/s00280-009-1046-1.
  26. Lv H., Han T., Shi X., Yao Y., Yao Y., Qiu W. et al. Genetic polymorphism of GSTP1 and ERCC1 correlated with response to platinum-based chemotherapy in non-small cell lung cancer. Med. Oncol. 2014; 31(8): 86. https://dx.doi.org/10.1007/s12032-014-0086-5.
  27. Dasgupta R.K., Adamson P.J., Davies F.E., Rollinson S., Roddam P.L., Ashcroft A.J. et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood. 2003; 102(7): 2345-50. https://dx.doi.org/10.1182/blood-2003-02-0444.
  28. Yiannakopoulou E.Ch. Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications. Pharmacogenomics J. 2013; 13(2): 105-9. https://dx.doi.org/10.1038/tpj.2012.42.
  29. Hu X.Y., Huang X.Y., Ma J., Zuo Y., Luo N.B., Lai S.L. et al. GSTT1 and GSTM1 polymorphisms predict treatment outcome for breast cancer: a systematic review and meta-analysis. Tumour Biol. 2016; 37(1): 151-62. https://dx.doi.org/10.1007/s13277-015-4401-3.
  30. McIlwain C.C., Townsend D.M., Tew K.D. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene. 2006; 25(11): 1639-48. https://dx.doi.org/10.1038/sj.onc.1209373.
  31. Pandya U., Srivastava S.K., Singhal S.S., Pal A., Awasthi S., Zimniak P. et al. Activity of allelic variants of Pi class human glutathione S-transferase toward chlorambucil. Biochem. Biophys. Res. Commun. 2000; 278(1): 258-62. https://dx.doi.org/10.1006/bbrc.2000.3787.
  32. Ishimoto T.M., Ali-Osman F. Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenetics. 2002; 12(7): 543-53. https://dx.doi.org/10.1097/00008571-200210000-00006.
  33. Zhang J., Ye Z.W., Chen W., Manevich Y., Mehrotra S., Ball L. et al. S-Glutathionylation of estrogen receptor α affects dendritic cell function. J. Biol. Chem. 2018; 293(12): 4366-80. https://dx.doi.org/10.1074/jbc.M117.814327.

Received 07.10.2024

Accepted 17.10.2024

About the Authors

Victoria G. Averkova, Researcher, Institute of Oncology and Mammology, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Oparin str., 4, buch1202@mail.ru, https://orcid.org/0000-0002-8584-5517
Svetlana V. Yureneva, Dr. Med. Sci., Professor at the Department of Obstetrics and Gynecology of the Department of Vocational Education, Deputy Director for Science, Institute of Oncology and Mammology, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Oparin str., 4, syureneva@gmail.com,
https://orcid.org/0000-0003-2864-066X
Andrey E. Donnikov, PhD, Head of the Laboratory of Molecular Genetic Methods, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Oparin str., 4, donnikov@dna-technology.ru, https://orcid.org/0000-0003-3504-2406
Corresponding author: Victoria G. Averkova, buch1202@mail.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.