ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

The essence of preeclampsia and the possibility of its termination

Sidorova I.S., Managadze I.J.

I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia

The etiopathogenetic cause of preeclampsia is currently unknown. In order to address this issue, it is necessary to develop an integrated, interdisciplinary and global approach. What is preeclampsia? What role does the fetus and its brain play in the development of preeclampsia? For the first time in the world, preeclampsia has been considered as a neurogenic neuroimmune conflict between the mother and the fetus after the 22nd week of pregnancy and further, during the formation of the substrate of higher nervous activity and correlates of consciousness in the fetus, the neocortex, in the process of neurocorticogenesis mediated by neuron-specific proteins.
The aim of this article – to present a new perspective on the etiopathogenesis of preeclampsia, to open up potential opportunities for further research by taking into account the key role of the fetal brain, its blood-brain barrier and neuron-specific proteins.
Conclusion: The presented concept reveals the true essence of preeclampsia and radically changes the modern understanding of its etiopathogenesis. It explains scientific facts and experimental data that were not previously scientifically justified, providing the basis for new directions in the search for innovative diagnostic and therapeutic approaches. There is a potential to stop the progression of preeclampsia, prevent severe complications for mothers and babies, and ensure the birth of healthy offspring.

Authors’ contributions: Sidorova I.S. – developing the concept and design of the study, editing the text; Sidorova I.S., Managadze I.J. – collection and analysis of literary data, writing the text.
The authors did not use AI tools to create the text of the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interests.
Funding: The study was conducted without sponsorship.
For citation: Sidorova I.S., Managadze I.J. The essence of preeclampsia and the possibility of its termination.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2026; (1): 5-11 (in Russian)
https://dx.doi.org/10.18565/aig.2025.223

Keywords

preeclampsia
neurocorticogenesis
neuron-specific proteins
blood-brain barrier
neuroimmune conflict

References

  1. Филиппов О.С., Гусева Е.В. Материнская смертность в Российской Федерации в 2020 году: первый год пандемии COVID-19. Проблемы репродукции. 2022; 28(1): 8-28. [Filippov O.S., Guseva E.V. Maternal mortality in the Russian Federation in 2020: the first year of the pandemic. Russian journal of human reproduction. 2022; 28(1): 8 28 (in Russian)]. https://dx.doi.org/10.17116/repro2022280118
  2. Федеральная служба государственной статистики (Росстат). Здравоохранение в России 2023. Статистический сборник. М.: Росстат; 2023. 179 c. [Federal State Statistics Service (Rosstat). Healthcare in Russia 2023. Statistical Collection. Moscow: Rosstat; 2023. 179 p. (in Russian)].
  3. Сидорова И.С., Манагадзе И.Д. Современная концепция развития преэклампсии: новые данные. Акушерство и гинекология. 2025; 2: 5-13. [Sidorova I.S., Managadze I.D. Modern concept of preeclampsia development: new data. Obstetrics and Gynecology. 2025; (2): 5-13 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.272
  4. Escudero C., Kupka E., Ibañez B., Sandoval H., Troncoso F., Wikström A.K. et al. Brain vascular dysfunction in mothers and their children exposed to preeclampsia. Hypertension. 2023; 80(2): 242-56. https://doi.org/10.1161/HYPERTENSIONAHA.122.19408
  5. Burwick R.M., Rodriguez M.H. Angiogenic biomarkers in preeclampsia. Obstet. Gynecol. 2024; 143(4): 515-23. https://dx.doi.org/10.1097/AOG.0000000000005532
  6. Burwick R.M., Feinberg B.B. Complement activation and regulation in preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome. Am. J. Obstet. Gynecol. 2022; 226(2S): S1059-70. https://dx.doi.org/10.1016/j.ajog.2020.09.038
  7. Collier A.Y., Smith L.A., Karumanchi S.A. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. Hum. Immunol. 2021; 82(5): 362-70. https://dx.doi.org/10.1016/j.humimm.2021.01.004
  8. Maeda K.J., McClung D.M., Showmaker K.C., Warrington J.P., Ryan M.J., Garrett M.R. et al. Endothelial cell disruption drives increased blood-brain barrier permeability and cerebral edema in the Dahl SS/jr rat model of superimposed preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 2021; 320(2): H535-48. https://dx.doi.org/10.1152/ajpheart.00383.2020
  9. Friis T., Wikström A.K., Acurio J., León J., Zetterberg H., Blennow K. et al. Cerebral biomarkers and blood-brain barrier integrity in preeclampsia. Cells. 2022; 11(5): 789. https://dx.doi.org/10.3390/cells11050789
  10. Bergman L., Hastie R., Zetterberg H., Blennow K., Schell S., Langenegger E. et al. Evidence of neuroinflammation and blood-brain barrier disruption in women with preeclampsia and eclampsia. Cells. 2021; 10(11): 3045. https://dx.doi.org/10.3390/cells10113045
  11. Bergman L., Torres-Vergara P., Penny J., Wikström J., Nelander M., Leon J. et al. Investigating maternal brain alterations in preeclampsia: the need for a multidisciplinary effort. Curr. Hypertens. Rep. 2019; 21(9): 72. https://dx.doi.org/10.1007/s11906-019-0977-0
  12. Clayton A.M., Shao Q., Paauw N.D., Giambrone A.B., Granger J.P., Warrington J.P. Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav. Immun. 2018; 70: 376-89. https://dx.doi.org/10.1016/j.bbi.2018.03.028
  13. Canjels L.P.W., Jansen J.F.A., Alers R.J., Ghossein-Doha C., van den Kerkhof M., Schiffer V.M.M.M. et al. Blood-brain barrier leakage years after pre-eclampsia: dynamic contrast-enhanced 7-Tesla MRI study. Ultrasound Obstet. Gynecol. 2022; 60(4): 541-8. https://dx.doi.org/10.1002/uog.24930
  14. Katsi V., Svigkou A., Dima I., Tsioufis K. Diagnosis and treatment of eclampsia. J. Cardiovasc. Dev. Dis. 2024; 11(9): 257. https://dx.doi.org/10.3390/jcdd11090257
  15. Mahendra V., Clark S.L., Suresh M.S. Neuropathophysiology of preeclampsia and eclampsia: a review of cerebral hemodynamic principles in hypertensive disorders of pregnancy. Pregnancy Hypertens. 2021; 23: 104-11. https://dx.doi.org/10.1016/j.preghy.2020.10.013
  16. Сидорова И.С., Никитина Н.А., Тардов М.В., Стулин И.Д. Особенности церебрального кровотока при тяжелой преэклампсии и эклампсии. Акушерство и гинекология. 2020; 12: 90-9. [Sidorova I.S., Nikitina N.A., Tardov M.V., Stulin I.D. Cerebral blood flow in severe pre-eclampsia and eclampsia. Obstetrics and Gynecology. 2020; (12): 90-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2020.12.90-99
  17. González-Rojas A., Valencia-Narbona M. Neurodevelopmental disruptions in children of preeclamptic mothers: pathophysiological mechanisms and consequences. Int. J. Mol. Sci. 2024; 25(7): 3632. https://dx.doi.org/10.3390/ijms25073632
  18. Gumusoglu S.B., Chilukuri A.S.S., Hing B.W.Q., Scroggins S.M., Kundu S., Sandgren J.A. et al. Altered offspring neurodevelopment in an arginine vasopressin preeclampsia model. Transl. Psychiatry. 2021; 11: 79. https://dx.doi.org/10.1038/s41398-021-01205-0
  19. Rätsep M.T., Paolozza A., Hickman A.F., Maser B., Kay V.R., Mohammad S. et al. Brain structural and vascular anatomy is altered in offspring of pre-eclamptic pregnancies: a pilot study. AJNR Am. J. Neuroradiol. 2016; 37(5): 939-45. https://dx.doi.org/10.3174/ajnr.A4640
  20. Цехмистренко Т.А., Васильева В.А., Обухов Д.К., Шумейко Н.С. Строение и развитие коры большого мозга. М.: Спутник+; 2019. 538 c. [Tsekhmistrenko T.A., Vasilyeva V.A., Obukhov D.K., Shumeyko N.S. Structure and development of the cerebral cortex. Moscow: Sputnik+; 2019. 538 p. (in Russian)].
  21. Kadic A.S., Kurjak A. Cognitive functions of the fetus. Ultraschall Med. 2018; 39(2): 181-9. https://dx.doi.org/10.1055/s-0043-123469
  22. Fagard J., Esseily R., Jacquey L., O'Regan K., Somogyi E. Fetal origin of sensorimotor behavior. Front. Neurorobot. 2018; 12: 23. https://dx.doi.org/10.3389/fnbot.2018.00023
  23. Moser J., Schleger F., Weiss M., Sippel K., Semeia L., Preissl H. Magnetoencephalographic signatures of conscious processing before birth. Dev. Cogn. Neurosci. 2021; 49: 100964. https://dx.doi.org/10.1016/j.dcn.2021.100964
  24. Falsaperla R., Collotta A.D., Spatuzza M., Familiari M., Vitaliti G., Ruggieri M. Evidences of emerging pain consciousness during prenatal development: a narrative review. Neurol. Sci. 2022; 43(6): 3523-32. https://dx.doi.org/10.1007/s10072-022-05968-2
  25. Liao J., Zhang Z., Huang W., Huang Q., Bi G. Neonatal neuron specific enolase, a sensitive biochemical marker of neuronal damage, is increased in preeclampsia: a retrospective cohort study. Brain Dev. 2020; 42(8): 564-71. https://dx.doi.org/10.1016/j.braindev.2020.04.011
  26. Busse M., Scharm M., Oettel A., Redlich A., Costa S.D., Zenclussen A.C. Enhanced S100B expression in T and B lymphocytes in spontaneous preterm birth and preeclampsia. J. Perinat. Med. 2021; 50(2): 157-66. https://dx.doi.org/10.1515/jpm-2021-0326
  27. Lederer W., Dominguez C.A., Popovscaia M., Putz G., Humpel C. Cerebrospinal fluid levels of tau and phospho-tau-181 proteins during pregnancy. Pregnancy Hypertens. 2016; 6(4): 384-7. https://dx.doi.org/10.1016/j.preghy.2016.08.243
  28. Andersson M., Oras J., Thörn S.E., Karlsson O., Kälebo P., Zetterberg H. et al. Signs of neuroaxonal injury in preeclampsia-A case control study. PLoS One. 2021; 16(2): e0246786. https://dx.doi.org/10.1371/journal.pone.0246786
  29. Bergman L., Hastie R., Bokström-Rees E., Zetterberg H., Blennow K., Schell S. et al. Cerebral biomarkers in neurologic complications of preeclampsia. Am. J. Obstet. Gynecol. 2022; 227(2): 298.e1-e10. https://dx.doi.org/10.1016/j.ajog.2022.02.036
  30. Vinci L., Ravarino A., Gerosa C., Pintus M.C., Marcialis M.A., Marinelli V. et al. Stem / progenitor cells in the cerebral cortex of the human preterm: a resource for an endogenous regenerative neuronal medicine? J. Pediatr. Neonat. Individual Med. 2016; 5(1): e050121. https://dx.doi.org/10.7363/050121
  31. Bergman L., Zetterberg H., Kaihola H., Hagberg H., Blennow K., Åkerud H. Blood-based cerebral biomarkers in preeclampsia: plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - a nested case control study. PLoS One. 2018; 13(5): e0196025. https://dx.doi.org/10.1371/journal.pone.0196025
  32. Сидорова И.С., Никитина Н.А. Обоснование современной концепции развития преэклампсии. Акушерство и гинекология. 2019; 4: 26-33. [Sidorova I.S., Nikitina N.A. Validation of the modern concept of the development of preeclampsia. Obstetrics and Gynecology. 2019; (4): 26-33 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.4.26-33
  33. Gumusoglu S.B., Chilukuri A.S.S., Santillan D.A., Santillan M.K., Stevens H.E. Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci. 2020; 43(4): 253-68. https://dx.doi.org/10.1016/j.tins.2020.02.003
  34. Cui J., Yang Z., Ma R., He W., Tao H., Li Y. et al. Placenta-targeted treatment strategies for preeclampsia and fetal growth restriction: an opportunity and major challenge. Stem Cell Rev. Rep. 2024; 20(6): 1501-11. https://dx.doi.org/10.1007/s12015-024-10739-x
  35. Wang L., Mu Q., Zhang W., Zheng W., Zhu X., Yu Y. et al. Placental targeted drug delivery: a review of recent progress. Nanoscale. 2025; 17(14): 8316-35. https://dx.doi.org/10.1039/d4nr05338a
  36. Haseloff R.F., Dithmer S., Winkler L., Wolburg H., Blasig I.E. Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin. Cell Dev. Biol. 2015; 38: 16-25. https://doi.org/10.1016/j.semcdb.2014.11.004
  37. Torres-Vergara P., Troncoso F., Acurio J., Kupka E., Bergman L., Wikström A.K. et al. Dysregulation of vascular endothelial growth factor receptor 2 phosphorylation is associated with disruption of the blood-brain barrier and brain endothelial cell apoptosis induced by plasma from women with preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2022; 1868(9): 166451. https://dx.doi.org/10.1016/j.bbadis.2022.166451
  38. Bergman L., Acurio J., Leon J., Gatu E., Friis T., Nelander M. et al. Preeclampsia and increased permeability over the blood-brain barrier: a role of vascular endothelial growth receptor 2. Am. J. Hypertens. 2021; 34(1): 73-81. https://dx.doi.org/10.1093/ajh/hpaa142
  39. Wang R., Lu K.P., Zhou X.Z. Function and regulation of cis P-tau in the pathogenesis and treatment of conventional and nonconventional tauopathies. J. Neurochem. 2023; 166(6): 904-14. https://dx.doi.org/10.1111/jnc.15909
  40. Jash S., Banerjee S., Cheng S., Wang B., Qiu C., Kondo A. et al. Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia. Nat. Commun. 2023; 14(1): 5414. https://dx.doi.org/10.1038/s41467-023-41144-6

Received 20.08.2025

Accepted 26.12.2025

About the Authors

Iraida S. Sidorova, Dr. Med. Sci., Professor, Academician of the RAS, Merited Scholar of the Russian Federation, Merited Doctor of the Russian Federation, Professor at the Department of Obstetrics and Gynecology No. 1 of the N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8 bld. 2, +7 (499) 248-67-29, sidorovais@yandex.ru,
https://orcid.org/0000-0003-2209-8662
Ioanna J. Managadze, resident and PhD student at the Department of Obstetrics and Gynecology No. 1 of the N.V. Sklifosovsky Institute of Clinical Medicine,
I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8, bld. 2, +7(499)248-67-29, ktb1966@mail.ru, https://orcid.org/0000-0001-8745-9372

Similar Articles