ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

Development and validation of an artificial intelligence-based system for predicting preterm birth using clinical data

Boldina Yu.S., Ivshin A.A., Svetova K.S.

1) Petrozavodsk State University, Petrozavodsk, Russia; 2) K.A. Gutkin Republican Perinatal Center, Petrozavodsk, Russia

Background: Preterm birth is a leading cause of neonatal mortality and disability, resulting in serious socio-economic consequences. Due to the high frequency of this condition, which has persisted for decades, there is a need for more effective tools to predict it.
Objective: To develop and validate an artificial intelligence-based system for predicting preterm birth using the data from electronic health records (EHR).
Materials and methods: The study used a dataset of 10,000 anonymized EHRs and 54 clinical variables. The system included an NLP model (based on RuBERT) for extracting the signs of preterm birth from the health records in the Russian language and a predictive model based on machine learning for assessing the risk of preterm birth. 
Results: The CatBoost classifier demonstrated optimal prediction performance with the following parameters: accuracy = 0.81 (95% CI: 0.799 –0.821), recall = 0.87 (95% CI: 0.857–0.883), precision = 0.76 (95% CI: 0.748–0.772), F1-score = 0.81 (95% CI: 0.805–0.815), and AUC-ROC = 0.82 (95% CI: 0.809–0.831).
Conclusion: The developed system for predicting preterm birth showed metrics comparable to foreign analogues and stability during validation. This confirms its potential use for implementing in real obstetric practice. 

Authors’ contributions: Boldina Yu.S. – developing the concept and design of the study, preparing and editing the draft manuscript; Ivshin A.A. – developing the concept and design of the study, expert analysis of the results, editing the manuscript; Svetova K.S. – collecting the data, analysis and interpretation of the results.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was financially supported by the Russian Science Foundation, project No. 24-25-00429, 
https://rscf.ru/project/24-25-00429/
Authors' Data Sharing Statement: The data supporting the findings of this study are available on request from the corresponding author after approval from the principal investigator.
For citation: Boldina Yu.S., Ivshin A.A., Svetova K.S. Development and validation of an 
artificial intelligence-based system for predicting preterm birth using clinical data.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (12): 74-87 (in Russian)
https://dx.doi.org/10.18565/aig.2025.213

Keywords

preterm birth
prediction
machine learning
artificial intelligence
predictive models
electronic health records

References

  1. Ившин А.А., Погодин О.О., Шакурова Е.Ю., Льдинина Т.Ю., Никитин В.С. Лапароскопический трансабдоминальный серкляж для лечения истмико-цервикальной недостаточности при беременности: клинический случай и обзор литературы. Акушерство, гинекология и репродукция. 2025; 19(1): 116-26. [Ivshin A.A., Pogodin O.O., Shakurova E.Yu., Ldinina T.Yu., Nikitin V.S. Experience of laparoscopic transabdominal cerclage for the correction of cervical insufficiency during pregnancy: a clinical case and literature review. Obstetrics, Gynecology and Reproduction. 2025; 19(1): 116-26 (in Russian)]. https://dx.doi.org/10.17749/2313-7347/ob.gyn.rep.2025.578
  2. Серов В.Н., Сухорукова О.И. Эффективность профилактики преждевременных родов. Акушерство и гинекология. 2013; 3: 48-53. [Serov V.N., Sukhorukova O.I. The effectiveness of preterm birth prevention. Obsterics and Gynecology. 2013; (3): 48-53 (in Russian)].
  3. Risnes K., Bilsteen J.F., Brown P., Pulakka A., Andersen A.N., Opdahl S. et al. Mortality among young adults born preterm and early term in 4 Nordic Nations. JAMA Netw. Open. 2021; 4(1): e2032779. https://dx.doi.org/10.1001/jamanetworkopen.2020.32779
  4. Jeon G.W., Lee J.H., Oh M., Chang Y.S. Serial long-term growth and neurodevelopment of very-low-birth-weight infants: 2022 update on the Korean neonatal network. J. Korean Med. Sci. 2022; 37(34): e263. https://dx.doi.org/10.3346/jkms.2022.37.e263
  5. Горина К.А., Ходжаева З.С., Белоусов Д.М., Баранов И.И., Гохберг Я.А., Пащенко А.А. Преждевременные роды: прошлые ограничения и новые возможности. Акушерство и гинекология. 2020; 1: 12-9. [Gorina K.A., Khodzhaeva Z.S., Belousov D.M., Baranov I.I., Gokhberg Ya.A., Pashchenko A.A. Premature birth: past restrictions and new opportunities. Obstetrics and Gynecology. 2020; (1): 12-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2020.1.12-119
  6. Назарова А.О., Малышкина А.И., Назаров С.Б. Факторы риска спонтанных преждевременных родов: результаты клинико-эпидемиологического исследования. Акушерство и гинекология. 2019; 9: 82-6. [Nazarova A.O., Malyshkina A.I., Nazarov S.B. Risk factors for spontaneous preterm birth: results of a clinical-epidemiological study. Obstetrics and Gynecology. 2019; 9: 82-6 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.9.82-86
  7. Белоусова В.С., Стрижаков А.Н., Свитич О.А., Тимохина Е.В., Кукина П.И., Богомазова И.М., Пицхелаури Е.Г. Преждевременные роды: причины, патогенез, тактика. Акушерство и гинекология. 2020; 2: 82-7. [BelousovaV.S., Strizhakov A.N., Svitich O.A., Timokhina N.V., Kukina P.I., Bogomazova I.M., Pitskhelauri N.G. Preterm birth: causes, pathogenesis, and management. Obstetrics and Gynecology. 2020; (2): 82-7 (in Russian)]. https://dx.doi.org/10.18565/aig.2020.2.82-87
  8. Thain S., Yeo G.S.H., Kwek K., Chern B., Tan K.H. Spontaneous preterm birth and cervical length in a pregnant Asian population. PLoS One. 2020; 15(4): e0230125. https://dx.doi.org/10.1371/journal.pone.0230125
  9. Друккер Н.А., Дурницына О.А., Никашина А.А., Селютина С.Н. Диагностическая значимость α-1-микроглобулина в развитии преждевременных родов. Акушерство и гинекология. 2019; 1: 81-5. [Drukker N.A., Durnitsyna O.A., Nikashina A.A., Selyutina S.N. The diagnostic value of α-1-microglobulin in the development of preterm labor. Obstetrics and Gynecology. 2019; (1): 81-5 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.1.81-85
  10. Баев О.Р., Дикке Г.Б. Диагностика преждевременного разрыва плодных оболочек на основании биохимических тестов. Акушерство и гинекология. 2018; 9: 132-6. [Baev O.R., Dikke G.B. Diagnosis of premature rupture of the membranes based on biochemical tests. Obstetrics and Gynecology. 2018; (9): 132-6 (in Russian)]. https://dx.doi.org/10.18565/aig.2018.9.132-136
  11. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Преждевременные роды. М.; 2020: 66 c. [Ministry of Health of the Russian Federation. Clinical guidelines. Premature birth. Moscow; 2020: 66 p. (in Russian)].
  12. Манухин И.Б., Фириченко С.В., Микаилова Л.У., Телекаева Р.Б., Мынбаев О.А. Прогнозирование и профилактика преждевременных родов - современное состояние проблемы. Российский вестник акушера-гинеколога. 2016; 3: 9-15. [Manukhin I.B., Firichenko S.V., Mikailova L.U., Telekaeva R.B., Mynbaev O.A. Prediction and prevention of preterm birth: state-of-the-art. Russian Bulletin of Obstetrician-Gynecologist. 2016; 3: 9-15 (in Russian)]. https://dx.doi.org/10.17116/rosakush20161639-15
  13. Ходжаева З.С., Дембовская С.В., Доброхотова Ю.Э., Сичинава Л.Г., Юзько А.М., Мальцева Л.И., Серова О.Ф., Макаров И.О., Ахмадеева Э.Н., Башмакова Н.В., Шмаков Р.Г., Клименченко Н.И., Муминова К.Т., Талибов О.Б., Сухих Г.Т. Медикаментозная профилактика преждевременных родов (результаты международного многоцентрового открытого исследования МИСТЕРИ). Акушерство и гинекология. 2016; 8: 37-43. [Khodzhaeva Z.S., Dembovskaya S.V., Dobrokhotova Yu.E., Sichinava L.G., Yuzko A.M., Maltseva L.I., Serova O.F., Makarov I.O., Akhmadeeva E.N., Bashmakova N.V., Shmakov R.G., Klimenchenko N.I., Muminova K.T., Talibov O.B., Sukhikh G.T.. Drug therapy for preterm birth: Results of the international multicenter open-label Mystery study. Obstetrics and Gynecology. 2016; (8): 37-43 (in Russian)]. https://dx.doi.org/10.18565/aig.2016.8.37-43
  14. Баринов С.В., Артымук Н.В., Новикова О.Н., Шамина И.В., Тирская Ю.И., Белинина А.А., Лазарева О.В., Кадцына Т.В., Фрикель Е.А., Атаманенко О.Ю., Островская О.В., Степанов С.С., Беглов Д.Е. Опыт ведения беременных группы высокого риска по преждевременым родам с применением акушерского куполообразного пессария и серкляжа. Акушерство и гинекология. 2019; 1: 140-8. [Barinov S.V., Artymuk N.V., Novikova O.N., Shamina I.V., Tirskaya Yu.I., Belinina A.A., Lazareva O.V., Kadtsyna T.V., Frikel E.A., Atamanenko O.Yu., Ostrovskaya O.V., Stepanov S.S., Beglov D.E. Experience in managing pregnant women at high risk for preterm birth, by using a dome-shaped obstetric pessary and cerclage. Obstetrics and Gynecology. 2019; (1): 140-8 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.1.140-148
  15. Crockart I.C., Brink L.T., du Plessis C., Odendaal H.J. Classification of intrauterine growth restriction at 34-38 weeks gestation with machine learning models. Inform. Med. Unlocked. 2021; 23: 100533. https://dx.doi.org/10.1016/j.imu.2021.100533
  16. Liu J., Wang C., Yan R., Lu Y., Bai J., Wang H. et al. Machine learning-based prediction of postpartum hemorrhage after vaginal delivery: combining bleeding high risk factors and uterine contraction curve. Arch. Gynecol. Obstet. 2022; 306(4): 1015-25. https://dx.doi.org/10.1007/s00404-021-06377-0
  17. Melinte-Popescu A.S., Vasilache I.A., Socolov D., Melinte-Popescu M. Predictive performance of machine learning-based methods for the prediction of preeclampsia-a prospective study. J. Clin. Med. 2023; 12(2): 418. https://dx.doi.org/10.3390/jcm12020418
  18. Андрейченко А.Е., Лучинин А.С., Ившин А.А., Ермак А.Д., Новицкий Р.Э., Гусев А.В. Разработка и валидация моделей прогнозирования общего риска преэклампсии и риска ранней преэклампсии с использованием алгоритмов машинного обучения в первом триместре беременности. Акушерство и гинекология. 2023; 10: 94-107. [Andreychenko A.E., Luchinin A.S., Ivshin A.A., Ermak A.D., Novitskiy R.E., Gusev A.V. Development and validation of models to predict total and early-onset preeclampsia in the first trimester of pregnancy using machine learning algorithms. Obstetrics and Gynecology. 2023; (10): 94-107 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.101
  19. Chen Y., Shi X., Wang Z., Zhang L. Development and validation of a spontaneous preterm birth risk prediction algorithm based on maternal bioinformatics: a single-center retrospective study. BMC Pregnancy Childbirth. 2024; 24(1): 763. https://dx.doi.org/10.1186/s12884-024-06933-x
  20. Zhang Y., Du S., Hu T., Xu S., Lu H., Xu C. et al. Establishment of a model for predicting preterm birth based on the machine learning algorithm. BMC Pregnancy Childbirth. 2023; 23(1): 779. https://dx.doi.org/10.1186/s12884-023-06058-7
  21. Sun Q., Zou X., Yan Y., Zhang H., Wang S., Gao Y. et al. Machine learning-based prediction model of preterm birth using electronic health record. J. Healthc. Eng. 2022; 2022: 9635526. https://dx.doi.org/10.1155/2022/9635526
  22. Mavrogiorgou A., Kiourtis A., Kleftakis S., Mavrogiorgos K., Zafeiropoulos N., Kyriazis D. A catalogue of machine learning algorithms for healthcare risk predictions. Sensors (Basel). 2022; 22(22): 8615. https://dx.doi.org/10.3390/s22228615
  23. Hicks S.A., Strümke I., Thambawita V., Hammou M., Riegler M.A., Halvorsen P. et al. On evaluation metrics for medical applications of artificial intelligence. Sci. Rep. 2022; 12(1): 5979. https://dx.doi.org/10.1038/s41598-022-09954-8
  24. Liu T., Krentz A., Lu L., Curcin V. Machine learning based prediction models for cardiovascular disease risk using electronic health records data: systematic review and meta-analysis. Eur. Heart J. Digit. Health. 2024; 6(1): 7-22. https://dx.doi.org/10.1093/ehjdh/ztae080
  25. Khandre V., Potdar J., Keerti A. Preterm birth: an overview. Cureus. 2022; 14(12): e33006. https://dx.doi.org/10.7759/cureus.33006
  26. Фомина А.С. Преждевременные роды, современные реалии. Научные результаты биомедицинских исследований. 2020; 6(3): 434-46. [Fomina A.S. Premature birth, modern realities. Research Results in Biomedicine. 2020; 6(3): 434-46 (in Russian)]. https://dx.doi.org/10.18413/2658-6533-2020-6-3-0-12

Received 12.08.2025

Accepted 16.12.2025

About the Authors

Yuliya S. Boldina, PhD Student, Senior Lecturer at the Department of Obstetrics, Gynecology, Dermatovenereology of the Medical Institute, Petrozavodsk State University; Obstetrician-Gynecologist, Republican Perinatal Center named after K.A. Gutkin, 31, Krasnoarmeyskaya str., Petrozavodsk, Republic of Karelia, 185035, Russia,
+7(981)405-85-24, ulia.isakova94@gmail.com, https://orcid.org/0000-0002-1450-650X
Alexander A. Ivshin, PhD, Associate Professor, Head of the Department of Obstetrics and Gynecology, Dermatovenerology of the Medical Institute, Petrozavodsk State University, 31, Krasnoarmeyskaya str., Petrozavodsk, Republic of Karelia, 185035, Russia, +7(909)567-12-51, scipeople@mail.ru, https://orcid.org/0000-0001-7834-096X
Kristina S. Svetova, MSc student in Computer Engineering at the Department of Information Engineering (DEI), University of Padua, Via Giovanni Gradenigo 6/b,
35131 Padova, Italy, +39 379-150-89-87, ksvetova16@gmail.com, https://orcid.org/0009-0001-5552-638X
Corresponding author: Alexander A. Ivshin, scipeople@mail.ru

Similar Articles