The use of extracellular vesicles in aesthetic gynecology
Chernyshev V.S., Khilkevich E.G., Kolesov D.V., Apolikhina I.A.
Extracellular vesicles (ECVs), including exosomes, are tiny particles that are secreted by cells in the body. ECVs have unique physicochemical properties, such as the ability to pass through tissue barriers, and are often used as carriers for delivering therapeutic drugs in aesthetic medicine. The article presents literature data on the mechanism of regulation of extracellular vesicles, their effect on accelerated tissue remodeling, suppression of scarring and tissue hyperproliferation. The paper provides data on how ECVs may delay cellular aging. Currently, there are three known studies in the field of aesthetic medicine based on the registration of clinical trials related to wound healing. ECVs are primarily used through topical application. The advantages of transdermal drug delivery include the ability to penetrate the cuticle, significantly increase the rate of absorption of active substances by the skin, reduce the effective loss of ingredients and side effects, convenience and safety.
Conclusion: ECVs, as a novel type of material for tissue engineering, have gradually begun to be used in aesthetic medicine. However, the widespread use of ECVs presents several challenges. In particular, the functions and molecular composition of ECVs have been poorly studied. The high cost of extracting ECVs from biological fluids remains a problem, and the biological safety of allogeneic ECVs has not been sufficiently studied. An important area is the choice of production technologies and standardization of clinical trials.
Authors’ contributions: Chernyshev V.S., Khilkevich E.G., Kolesov D.V., Apolikhina I.A. – developing the concept and design of the study, collecting and processing the material, selection of literature on the subject of the article, writing and editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Chernyshev V.S., Khilkevich E.G., Kolesov D.V., Apolikhina I.A.
The use of extracellular vesicles in aesthetic gynecology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2026; (2): 31-38 (in Russian)
https://dx.doi.org/10.18565/aig.2026.09
Keywords
References
- Moiseeva E.O., Kozhevnikova D.D., Yashchenok A.M., Sergeev I.S., Alentov I.I., Gorin D.A. et al. Surface modification of cellulose acetate membrane for fabrication of microfluidic platforms for express extracellular vesicle-based liquid biopsy. Microchemical Journal. 2025; 208: 112388. https://dx.doi.org/10.1016/j.microc.2024.112388
- Zhdanova D.Y., Bobkova N.V., Chaplygina A.V., Svirshchevskaya E.V., Poltavtseva R.A., Vodennikova A.A. et al. Effect of small extracellular vesicles produced by mesenchymal stem cells on 5xFAD mice hippocampal cultures. Int. J. Mol. Sci. 2025; 26(9): 4026. https://dx.doi.org/10.3390/ijms26094026
- Kepsha M.A., Timofeeva A.V., Chernyshev V.S., Silachev D.N., Mezhevitinova E.A., Sukhikh G.T. MicroRNA-based liquid biopsy for cervical cancer diagnostics and treatment monitoring. Int. J. Mol. Sci. 2024; 25(24): 13271. https://dx.doi.org/10.3390/ijms252413271
- Pan Z., Sun W., Chen Y., Tang H., Lin W., Chen J. et al. Extracellular vesicles in tissue engineering: biology and engineered strategy. Adv. Healthc. Mater. 2022; 11(21): e2201384. https://dx.doi.org/10.1002/adhm.202201384
- Marcus M.E., Leonard J.N. FedExosomes: engineering therapeutic biological nanoparticles that truly deliver. Pharm. (Basel). 2013; 6(5): 659-80. https://dx.doi.org/10.3390/ph6050659
- Cheng J., Zhao Z.W., Wen J.R., Wang L., Huang L.W., Yang Y.L. et al. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J. Clin. Cases. 2020; 8(8): 1400-13. https://dx.doi.org/10.12998/wjcc.v8.i8.1400
- Lee Y., El Andaloussi S., Wood M.J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012; 21(R1): R125-34. https://dx.doi.org/10.1093/hmg/dds317
- Golchin A. Cell-based therapy for severe COVID-19 patients: clinical trials and cost-utility. Stem Cell Rev. Rep. 2021; 17(1): 56-62. https://dx.doi.org/10.1007/s12015-020-10046-1
- Pulido-Escribano V., Camacho-Cardenosa M., Dorado G., Quesada-Gómez J.M., Calañas-Continente A., Gálvez-Moreno M.Á. et al. The use of plant-derived extracellular vesicles in regenerative medicine applied to cutaneous wound healing. Pharmaceutics. 2025; 17(12): 1531. https://dx.doi.org/10.3390/pharmaceutics17121531
- Moghaddam Z.S., Dehghan A., Halimi S., Najafi F., Nokhostin A., Naeini A.E. et al. Bacterial extracellular vesicles: bridging pathogen biology and therapeutic innovation. Acta Biomater. 2025; 200: 1-20. https://dx.doi.org/10.1016/j.actbio.2025.05.028
- Karnas E., Dudek P., Zuba-Surma E. Stem cell- derived extracellular vesicles as new tools in regenerative medicine – immunomodulatory role and future perspectives. Front. Immunol. 2023; 14: 1120175. https://doi.org/10.3389/fimmu.2023.1120175
- Zhai M., Zhu Y., Yang M., Mao C. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv. Sci. (Weinh). 2020; 7(19): 2001334. https://dx.doi.org/10.1002/advs.202001334
- Yoshida M., Satoh A., Lin J. B., Mills K. F., Sasaki Y., Rensing N. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell. Metab. 2019; 30(2): 329-42.e5. https://dx.doi.org/10.1016/j.cmet.2019.05.015
- Li D., Wu N. Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Res. Clin. Pract. 2022; 187: 109882. https://dx.doi.org/10.1016/j.diabres.2022.109882
- Han G., Kim H., Kim D.E., Ahn Y., Kim J., Jang Y.J. et al. The potential of bovine colostrum-derived exosomes to repair aged and damaged skin cells. Pharmaceutics. 2022; 14(2): 307. https://dx.doi.org/10.3390/pharmaceutics14020307
- Liu Y., Xue L., Gao H., Chang L., Yu X., Zhu Z. et al. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes. J. Dermatol. Sci. 2019; 93(3): 159-67. https://dx.doi.org/10.1016/j.jdermsci.2019.02.001
- Bae I.S., Kim S.H. Milk exosome-derived MicroRNA-2478 suppresses melanogenesis through the akt-gsk3β pathway. Cells. 2021; 10(11): 2848. https://dx.doi.org/10.3390/cells10112848
- Li Z.Q., Kong L., Liu C., Xu H.G. Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1β-induced annulus fibrosus cell damage. Am. J. Med. Sci. 2020; 360(6): 693-700. https://dx.doi.org/10.1016/j.amjms.2020.07.025
- Liu Y., Xue L., Gao H., Chang L., Yu X., Zhu Z. et al. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes. J. Dermatol. Sci. 2019; 93(3): 159-67. https://dx.doi.org/10.1016/j.jdermsci.2019.02.001
- Wang L., Hu L., Zhou X., Xiong Z., Zhang C., Shehada H.M.A. et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep. 2017; 7(1): 13321. https://dx.doi.org/10.1038/s41598-017-12919-x
- Qi J., Liu Q., Reisdorf R.L., Boroumand S., Behfar A., Moran S.L. et al. Characterization of a purified exosome product and its effects on canine flexor tenocyte biology. J. Orthop. Res. 2020; 38(8): 1845-55. https://dx.doi.org/10.1002/jor.24587
- Zifkos K., Dubois C., Schafer K. Extracellular vesicles and thrombosis: Update on the clinical and experimental evidence. Int. J. Mol. Sci. 2021; 22(17): 9317. https://dx.doi.org/10.3390/ijms22179317
- Chamberlain C.S., Kink J.A., Wildenauer L.A., McCaughey M., Henry K., Spiker A.M. et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells. 2021; 39(1): 55-61. https://dx.doi.org/10.1002/stem.3291
- Das A., Mohan V., Krishnaswamy V.R., Solomonov I., Sagi I. Exosomes as a storehouse of tissue remodeling proteases and mediators of cancer progression. Cancer Metastasis Rev. 2019; 38(3): 455-68. https://dx.doi.org/10.1007/s10555-019-09813-5
- An Y., Lin S., Tan X., Zhu S., Nie F., Zhen Y. et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell. Prolif. 2021; 54(3): e12993. https://dx.doi.org/10.1111/cpr.12993
- Gartz M., Darlington A., Afzal M.Z., Strande J.L. Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling. Sci. Rep. 2018; 8(1): 16519. https://dx.doi.org/10.1038/s41598-018-34879-6
- Geng H.Y., Feng Z.J., Zhang J.J., Li G.Y. Exosomal CLIC1 released by CLL promotes HUVECs angiogenesis by regulating ITGβ1‐MAPK/ERK axis. Kaohsiung J. Med. Sci. 2021; 37(3): 226-35. https://dx.doi.org/10.1002/kjm2.12287
- He X., Dong Z., Cao Y., Wang H., Liu S., Liao L. et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019; 2019: 1-16: 7132708. https://dx.doi.org/10.1155/2019/7132708
- Zhang J., Guan J., Niu X., Hu G., Guo S., Li Q. et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med. 2015; 13: 49. https://dx.doi.org/10.1186/s12967-015-0417-0
- Shabbir A., Cox A., Rodriguez-Menocal L., Salgado M., Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015; 24(14): 1635-47. https://dx.doi.org/10.1089/scd.2014.0316
- Zhao B., Li X., Shi X., Shi X., Zhang W., Wu G. et al. Exosomal MicroRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int. 2018; 2018: 5420463. https://dx.doi.org/10.1155/2018/5420463
- Ma T., Fu B., Yang X., Xiao Y., Pan M. Adipose mesenchymal stem cell‐derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β‐catenin signaling in cutaneous wound healing. J. Cell. Biochem. 2019; 120(6): 10847-54. https://dx.doi.org/10.1002/jcb.28376
- Xu J., Bai S., Cao Y., Liu L., Fang Y., Du J. et al. miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab. Syndr. Obes. 2020; 13: 1259-70. https://dx.doi.org/10.2147/DMSO.S243549
- Zhang J., Chen C., Hu B., Niu X., Liu X., Zhang G. et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through erk1/2 signaling. Int. J. Biol. Sci. 2016; 12(12): 1472-87. https://dx.doi.org/10.7150/ijbs.15514
- Tao S.C., Guo S.C., Li M., Ke Q.F., Guo Y.P., Zhang C.Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl. Med. 2017; 6(3): 736-47. https://dx.doi.org/10.5966/sctm.2016-0275
- Sahin F., Kocak P., Gunes M.Y., Ozkan I., Yildirim E., Kala E.Y. In vitro wound healing activity of wheat-derived nanovesicles. Appl. Biochem. Biotechnol. 2019; 188(2): 381-94. https://dx.doi.org/10.1007/s12010-018-2913-1
- Zhang B., Shi Y., Gong A., Pan Z., Shi H., Yang H. et al. HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the Wnt response via modulation of YAP during cutaneous regeneration. Stem Cells. 2016; 34(10): 2485-500. https://dx.doi.org/10.1002/stem.2432
- Cheng Y., Zeng Q., Han Q., Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019; 10(4): 295-9. https://dx.doi.org/10.1007/s13238-018-0529-4
- Yuan R., Dai X., Li Y., Li C., Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol. Med. Rep. 2021; 24(5): 758. https://dx.doi.org/10.3892/mmr.2021.12398
- Kim S.R., Zou X., Tang H., Puranik A.S., Abumoawad A.M., Zhu X.Y. et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells. J. Cell. Physiol. 2021; 236(2): 1332-44. https://dx.doi.org/10.1002/jcp.29940
- McReynolds M.R., Chellappa K., Chiles E., Jankowski C., Shen Y., Chen L. et al. NAD(+) flux is maintained in aged mice despite lower tissue concentrations. Cell. Syst. 2021; 12(12): 1160-72.e4. https://dx.doi.org/10.1016/j.cels.2021.09.001
- Li L., Zhang Y., Mu J., Chen J., Zhang C., Cao H. et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020; 20(6): 4298-305. https://dx.doi.org/10.1021/acs.nanolett.0c00929
- Li Y., Xiao Q., Tang J., Xiong L., Li L. Extracellular vesicles: emerging therapeutics in cutaneous lesions. Int. J. Nanomedicine. 2021; 16: 6183-202. https://dx.doi.org/10.2147/ijn.S322356
- Li Y., Zhang J., Shi J., Liu K., Wang X., Jia Y. et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell. Res. Ther. 2021; 12(1): 221. https://dx.doi.org/10.1186/s13287-021-02290-0
- Lee J.H., Yoon J.Y., Lee J.H., Lee H.H., Knowles J.C., Kim H.W. Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. J. Tissue Eng. 2021; 12: 204173142110190. https://dx.doi.org/10.1177/20417314211019015
- Savcı Y., Kırbaş O.K., Bozkurt B.T., Abdik E.A., Taşlı P.N., Şahin F. et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021; 12(11): 5144-56. https://dx.doi.org/10.1039/d0fo02953j
- Manconi M., Manca M.L., Marongiu F., Caddeo C., Castangia I., Petretto G.L. et al. Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. Int. J. Pharm. 2016; 506(1-2): 449-57. https://dx.doi.org/10.1016/j.ijpharm.2016.04.014
- Zeng L., Wang H., Shi W., Chen L., Chen T., Chen G. et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J. Nanobiotechnology. 2021; 19(1): 439. https://dx.doi.org/10.1186/s12951-021-01195-7
- Kim M., Park J.H. Isolation of Aloe saponaria – derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics. 2022; 14(9): 1905. https://dx.doi.org/10.3390/pharmaceutics14091905
- Leggio L., Arrabito G., Ferrara V., Vivarelli S., Paternò G., Marchetti B. et al. Mastering the tools: Natural versus artificial vesicles in nanomedicine. Adv. Healthc. Mat. 2020; 9(18): e2000731. https://dx.doi.org/10.1002/adhm.202000731
- Dad H.A., Gu T.W., Zhu A.Q., Huang L.Q., Peng L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther. 2021; 29(1): 13-31. https://dx.doi.org/10.1016/j.ymthe.2020.11.030
- Yari H., Mikhailova M.V., Mardasi M., Jafarzadehgharehziaaddin M., Shahrokh S., Thangavelu L. et al. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell. Res. Ther. 2022; 13(1): 423. https://dx.doi.org/10.1186/s13287-022-03122-5
- Zhang K., Yu L., Li F. R., Li X., Wang Z., Zou X. et al. Topical application of exosomes derived from human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging. Int. J. Nanomedicine. 2020; 15, 2859-72. https://dx.doi.org/10.2147/ijn.S249751
- Shang H., Younas A., Zhang N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022; 14(3): e1778. https://dx.doi.org/10.1002/wnan.1778
- Cao L., Tian T., Huang Y., Tao S., Zhu X., Yang M. et al. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100. J. Nanobiotechnology. 2021; 19(1): 20. https://dx.doi.org/10.1186/s12951-020-00757-5
- Dan X., Li S., Chen H., Xue P., Liu B., Ju Y. et al. Tailoring biomaterials for skin anti-aging. Mater. Today Bio. 2024; 28: 101210. https://dx.doi.org/10.1016/j.mtbio.2024.101210
- Han X., Wu P., Li L., Sahal H.M., Ji C., Zhang J. et al. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell. Cycle. 2021; 20(5-6): 616-29. https://dx.doi.org/10.1080/15384101.2021.1894813
- Shin K.O., Ha D.H., Kim J.O., Crumrine D.A., Meyer J.M., Wakefield J.S. et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de Novo synthesis of ceramides in atopic dermatitis. Cells. 2020; 9(3): 680. https://dx.doi.org/10.3390/cells9030680
- Shiekh P.A., Singh A., Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020; 249: 120020. https://dx.doi.org/10.1016/j.biomaterials.2020.120020
- Wang C., Wang M., Xu T., Zhang X., Lin C., Gao W. et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019; 9(1): 65-76. https://dx.doi.org/10.7150/thno.29766
- Riau A.K., Ong H.S., Yam G.H.F., Mehta J.S. Sustained delivery system for stem cell-derived exosomes. Front. Pharmacol. 2019; 10: 1368. https://dx.doi.org/10.3389/fphar.2019.01368
- Wang M., Wang C., Chen M., Xi Y., Cheng W., Mao C. et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019; 13(9): 10279-93. https://dx.doi.org/10.1021/acsnano.9b03656
- Mehryab F., Rabbani S., Shahhosseini S., Shekari F., Fatahi Y., Baharvand H. et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater. 2020; 113: 42-62. https://dx.doi.org/10.1016/j.actbio.2020.06.036
- Jing H., He X., Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl. Res. 2018; 196: 1-16. https://dx.doi.org/10.1016/j.trsl.2018.01.005
- Hade M.D., Suire C.N., Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021; 10(8): 1959. https://dx.doi.org/10.3390/cells10081959
- Yang G., Chen G., Gu Z. Transdermal drug delivery for hair regrowth. Mol. Pharm. 2021; 18(2): 483-90. https://dx.doi.org/10.1021/acs.molpharmaceut.0c00041
- Gimona M., Pachler K., Laner-Plamberger S., Schallmoser K., Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int. J. Mol. Sci. 2017; 18(6): 1190. https://dx.doi.org/10.3390/ijms18061190
- Cha J.M., Shin E.K., Sung J.H., Moon G.J., Kim E.H., Cho Y.H. et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci. Rep. 2018; 8(1): 1171. https://dx.doi.org/10.1038/s41598-018-19211-6
- Cao J., Wang B., Tang T., Lv L., Ding Z., Li Z. et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell. Res. Ther. 2020; 11(1): 206. https://dx.doi.org/10.1186/s13287-020-01719-2
- Chen T.S., Arslan F., Yin Y., Tan S.S., Lai R.C., Choo A.B. et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011; 9: 47. https://dx.doi.org/10.1186/1479-5876-9-47
- Lener T., Gimona M., Aigner L., Borger V., Buzas E., Camussi G. et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J. Extracell. Vesicles. 2015; 4: 30087. https://dx.doi.org/10.3402/jev.v4.30087
- Zhang Y., Bi J., Huang J., Tang Y., Du S., Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine. 2020; 15, 6917-34. https://dx.doi.org/10.2147/IJN.S264498
- Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977. https://dx.doi.org/10.1126/science.aau6977
- Livshits M.A., Khomyakova E., Evtushenko E.G., Lazarev V.N., Kulemin N.A., Semina S.E. et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci. Rep. 2015; 5: 17319. https://dx.doi.org/10.1038/srep17319
- Domenis R., Zanutel R., Caponnetto F., Toffoletto B., Cifu A., Pistis C. et al. Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis. Mediators Inflamm. 2017; 2017: 4814987. https://dx.doi.org/10.1155/2017/4814987
- He F., Liu H., Guo X., Yin B.C., Ye B.C. Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal. Chem. 2017; 89(23): 12968-75. https://dx.doi.org/10.1021/acs.analchem.7b03919
- Yang J.S., Lee J.C., Byeon S.K., Rha K.H., Moon M.H. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal. Chem. 2017; 89(4): 2488-96. https://dx.doi.org/10.1021/acs.analchem.6b04634
- Willms E., Cabanas C., Mager I., Wood M. J.A., Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 2018; 9: 738. https://dx.doi.org/10.3389/fimmu.2018.00738
- Yang X.X., Sun C., Wang L., Guo X.L. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Release. 2019; 308: 119-29. https://dx.doi.org/10.1016/j.jconrel.2019.07.021
- Alzhrani G.N., Alanazi S.T., Alsharif S.Y., Albalawi A.M., Alsharif A.A., Abdel-Maksoud M.S. et al. Exosomes: isolation, characterization, and biomedical applications. Cell Biol. Int. 2021; 45(9): 1807-31. https://dx.doi.org/10.1002/cbin.11620
- Chen Y., Zhu Q., Cheng L., Wang Y., Li M., Yang Q. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods. 2021; 18(2): 212-8. https://dx.doi.org/10.1038/s41592-020-01034-x
- Reiner A.T., Witwer K.W., van Balkom B.W.M., de Beer J., Brodie C., Corteling R.L. et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl. Med. 2017; 6(8), 1730-9. https://dx.doi.org/10.1002/sctm.17-0055
- Ha D.H., Kim H.K., Lee J., Kwon H.H., Park G.H., Yang S.H. et al. Mesenchymal stem / stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020; 9(5): 1157. https://dx.doi.org/10.3390/cells9051157
- Ha D.H., Kim S.D., Lee J., Kwon H.H., Park G.H., Yang S.H. et al. Toxicological evaluation of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells. Regul. Toxicol. Pharmacol. 2020; 115: 104686. https://dx.doi.org/10.1016/j.yrtph.2020.104686
- Yi Y.W., Lee J.H., Kim S.-Y., Pack C.-G., Ha D.H., Park S.R. et al. Advances in analysis of biodistribution of exosomes by molecular imaging. Int. J. Mol. Sci. 2020; 21(2): 665. https://dx.doi.org/10.3390/ijms21020665
- Potter M., Lins B., Mietzsch M., Heilbronn R., Van Vliet K., Chipman P. et al. A simplified purification protocol for recombinant adeno-associated virus vectors. Mol. Ther. Methods Clin. Dev. 2014; 1: 14034. https://dx.doi.org/10.1038/mtm.2014.34
- Haraszti R.A., Miller R., Stoppato M., Sere Y.Y., Coles A., Didiot M.C. et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol. Ther. 2018; 26(12): 2838-47. https://dx.doi.org/10.1016/j.ymthe.2018.09.015
- Lee J.H., Ha D.H., Go H.K., Youn J., Kim H.K., Jin R.C. et al. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int. J. Mol. Sci. 2020; 21(13): 4774. https://dx.doi.org/10.3390/ijms21134774
- Busatto S., Vilanilam G., Ticer T., Lin W.L., Dickson D.W., Shapiro S. et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018; 7(12): 273. https://dx.doi.org/10.3390/cells7120273
Received 16.01.2026
Accepted 10.02.2026
About the Authors
Vasiliy S. Chernyshev, PhD in Chemical Engineering, Head of the Biophotonics Laboratory, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4; Senior Researcher at the Biophotonics Laboratory,Skolkovo Institute of Science and Technology, v_chernyshev@oparina4.ru, https://orcid.org/0000-0003-2372-7037
Elena G. Khilkevich, Dr. Med. Sci., obstetrician-gynecologist, doctor of physical and rehabilitation medicine, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4, e_khilkevich@oparina4.ru,
https://orcid.org/0000-0001-8826-8439
Dmitriy V. Kolesov, PhD in Physics and Mathematics, Senior Researcher at the Biophotonics Laboratory, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4, maedros@bk.ru, https://orcid.org/0000-0003-0270-2893
Inna A. Apolikhina, Honored Doctor of the Russian Federation, Dr. Med. Sci., Professor, Head of the Department of Aesthetic Gynecology and Rehabilitation, Professor at the Department of Obstetrics and Gynecology of the Department of Vocational Education, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4; Professor, Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University); President of the Association of Specialists in Aesthetic Gynecology, i_apolikhina@oparina4.ru, https://orcid.org/0000-0002-4581-6295



