ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

The use of extracellular vesicles in aesthetic gynecology

Chernyshev V.S., Khilkevich E.G., Kolesov D.V., Apolikhina I.A.

1) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia; 3) Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia

Extracellular vesicles (ECVs), including exosomes, are tiny particles that are secreted by cells in the body. ECVs have unique physicochemical properties, such as the ability to pass through tissue barriers, and are often used as carriers for delivering therapeutic drugs in aesthetic medicine. The article presents literature data on the mechanism of regulation of extracellular vesicles, their effect on accelerated tissue remodeling, suppression of scarring and tissue hyperproliferation. The paper provides data on how ECVs may delay cellular aging. Currently, there are three known studies in the field of aesthetic medicine based on the registration of clinical trials related to wound healing. ECVs are primarily used through topical application. The advantages of transdermal drug delivery include the ability to penetrate the cuticle, significantly increase the rate of absorption of active substances by the skin, reduce the effective loss of ingredients and side effects, convenience and safety.
Conclusion: ECVs, as a novel type of material for tissue engineering, have gradually begun to be used in aesthetic medicine. However, the widespread use of ECVs presents several challenges. In particular, the functions and molecular composition of ECVs have been poorly studied. The high cost of extracting ECVs from biological fluids remains a problem, and the biological safety of allogeneic ECVs has not been sufficiently studied. An important area is the choice of production technologies and standardization of clinical trials.

Authors’ contributions: Chernyshev V.S., Khilkevich E.G., Kolesov D.V., Apolikhina I.A. – developing the concept and design of the study, collecting and processing the material, selection of literature on the subject of the article, writing and editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Chernyshev V.S., Khilkevich E.G., Kolesov D.V., Apolikhina I.A. 
The use of extracellular vesicles in aesthetic gynecology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2026; (2): 31-38 (in Russian)
https://dx.doi.org/10.18565/aig.2026.09

Keywords

extracellular vesicles
aesthetic gynecology
tissue regeneration
cellular aging

References

  1. Moiseeva E.O., Kozhevnikova D.D., Yashchenok A.M., Sergeev I.S., Alentov I.I., Gorin D.A. et al. Surface modification of cellulose acetate membrane for fabrication of microfluidic platforms for express extracellular vesicle-based liquid biopsy. Microchemical Journal. 2025; 208: 112388. https://dx.doi.org/10.1016/j.microc.2024.112388
  2. Zhdanova D.Y., Bobkova N.V., Chaplygina A.V., Svirshchevskaya E.V., Poltavtseva R.A., Vodennikova A.A. et al. Effect of small extracellular vesicles produced by mesenchymal stem cells on 5xFAD mice hippocampal cultures. Int. J. Mol. Sci. 2025; 26(9): 4026. https://dx.doi.org/10.3390/ijms26094026
  3. Kepsha M.A., Timofeeva A.V., Chernyshev V.S., Silachev D.N., Mezhevitinova E.A., Sukhikh G.T. MicroRNA-based liquid biopsy for cervical cancer diagnostics and treatment monitoring. Int. J. Mol. Sci. 2024; 25(24): 13271. https://dx.doi.org/10.3390/ijms252413271
  4. Pan Z., Sun W., Chen Y., Tang H., Lin W., Chen J. et al. Extracellular vesicles in tissue engineering: biology and engineered strategy. Adv. Healthc. Mater. 2022; 11(21): e2201384. https://dx.doi.org/10.1002/adhm.202201384
  5. Marcus M.E., Leonard J.N. FedExosomes: engineering therapeutic biological nanoparticles that truly deliver. Pharm. (Basel). 2013; 6(5): 659-80. https://dx.doi.org/10.3390/ph6050659
  6. Cheng J., Zhao Z.W., Wen J.R., Wang L., Huang L.W., Yang Y.L. et al. Status, challenges, and future prospects of stem cell therapy in pelvic floor disorders. World J. Clin. Cases. 2020; 8(8): 1400-13. https://dx.doi.org/10.12998/wjcc.v8.i8.1400
  7. Lee Y., El Andaloussi S., Wood M.J. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012; 21(R1): R125-34. https://dx.doi.org/10.1093/hmg/dds317
  8. Golchin A. Cell-based therapy for severe COVID-19 patients: clinical trials and cost-utility. Stem Cell Rev. Rep. 2021; 17(1): 56-62. https://dx.doi.org/10.1007/s12015-020-10046-1
  9. Pulido-Escribano V., Camacho-Cardenosa M., Dorado G., Quesada-Gómez J.M., Calañas-Continente A., Gálvez-Moreno M.Á. et al. The use of plant-derived extracellular vesicles in regenerative medicine applied to cutaneous wound healing. Pharmaceutics. 2025; 17(12): 1531. https://dx.doi.org/10.3390/pharmaceutics17121531
  10. Moghaddam Z.S., Dehghan A., Halimi S., Najafi F., Nokhostin A., Naeini A.E. et al. Bacterial extracellular vesicles: bridging pathogen biology and therapeutic innovation. Acta Biomater. 2025; 200: 1-20. https://dx.doi.org/10.1016/j.actbio.2025.05.028
  11. Karnas E., Dudek P., Zuba-Surma E. Stem cell- derived extracellular vesicles as new tools in regenerative medicine – immunomodulatory role and future perspectives. Front. Immunol. 2023; 14: 1120175. https://doi.org/10.3389/fimmu.2023.1120175
  12. Zhai M., Zhu Y., Yang M., Mao C. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv. Sci. (Weinh). 2020; 7(19): 2001334. https://dx.doi.org/10.1002/advs.202001334
  13. Yoshida M., Satoh A., Lin J. B., Mills K. F., Sasaki Y., Rensing N. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell. Metab. 2019; 30(2): 329-42.e5. https://dx.doi.org/10.1016/j.cmet.2019.05.015
  14. Li D., Wu N. Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Res. Clin. Pract. 2022; 187: 109882. https://dx.doi.org/10.1016/j.diabres.2022.109882
  15. Han G., Kim H., Kim D.E., Ahn Y., Kim J., Jang Y.J. et al. The potential of bovine colostrum-derived exosomes to repair aged and damaged skin cells. Pharmaceutics. 2022; 14(2): 307. https://dx.doi.org/10.3390/pharmaceutics14020307
  16. Liu Y., Xue L., Gao H., Chang L., Yu X., Zhu Z. et al. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes. J. Dermatol. Sci. 2019; 93(3): 159-67. https://dx.doi.org/10.1016/j.jdermsci.2019.02.001
  17. Bae I.S., Kim S.H. Milk exosome-derived MicroRNA-2478 suppresses melanogenesis through the akt-gsk3β pathway. Cells. 2021; 10(11): 2848. https://dx.doi.org/10.3390/cells10112848
  18. Li Z.Q., Kong L., Liu C., Xu H.G. Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1β-induced annulus fibrosus cell damage. Am. J. Med. Sci. 2020; 360(6): 693-700. https://dx.doi.org/10.1016/j.amjms.2020.07.025
  19. Liu Y., Xue L., Gao H., Chang L., Yu X., Zhu Z. et al. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes. J. Dermatol. Sci. 2019; 93(3): 159-67. https://dx.doi.org/10.1016/j.jdermsci.2019.02.001
  20. Wang L., Hu L., Zhou X., Xiong Z., Zhang C., Shehada H.M.A. et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci. Rep. 2017; 7(1): 13321. https://dx.doi.org/10.1038/s41598-017-12919-x
  21. Qi J., Liu Q., Reisdorf R.L., Boroumand S., Behfar A., Moran S.L. et al. Characterization of a purified exosome product and its effects on canine flexor tenocyte biology. J. Orthop. Res. 2020; 38(8): 1845-55. https://dx.doi.org/10.1002/jor.24587
  22. Zifkos K., Dubois C., Schafer K. Extracellular vesicles and thrombosis: Update on the clinical and experimental evidence. Int. J. Mol. Sci. 2021; 22(17): 9317. https://dx.doi.org/10.3390/ijms22179317
  23. Chamberlain C.S., Kink J.A., Wildenauer L.A., McCaughey M., Henry K., Spiker A.M. et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells. 2021; 39(1): 55-61. https://dx.doi.org/10.1002/stem.3291
  24. Das A., Mohan V., Krishnaswamy V.R., Solomonov I., Sagi I. Exosomes as a storehouse of tissue remodeling proteases and mediators of cancer progression. Cancer Metastasis Rev. 2019; 38(3): 455-68. https://dx.doi.org/10.1007/s10555-019-09813-5
  25. An Y., Lin S., Tan X., Zhu S., Nie F., Zhen Y. et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell. Prolif. 2021; 54(3): e12993. https://dx.doi.org/10.1111/cpr.12993
  26. Gartz M., Darlington A., Afzal M.Z., Strande J.L. Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling. Sci. Rep. 2018; 8(1): 16519. https://dx.doi.org/10.1038/s41598-018-34879-6
  27. Geng H.Y., Feng Z.J., Zhang J.J., Li G.Y. Exosomal CLIC1 released by CLL promotes HUVECs angiogenesis by regulating ITGβ1‐MAPK/ERK axis. Kaohsiung J. Med. Sci. 2021; 37(3): 226-35. https://dx.doi.org/10.1002/kjm2.12287
  28. He X., Dong Z., Cao Y., Wang H., Liu S., Liao L. et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int. 2019; 2019: 1-16: 7132708. https://dx.doi.org/10.1155/2019/7132708
  29. Zhang J., Guan J., Niu X., Hu G., Guo S., Li Q. et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J. Transl. Med. 2015; 13: 49. https://dx.doi.org/10.1186/s12967-015-0417-0
  30. Shabbir A., Cox A., Rodriguez-Menocal L., Salgado M., Van Badiavas E. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015; 24(14): 1635-47. https://dx.doi.org/10.1089/scd.2014.0316
  31. Zhao B., Li X., Shi X., Shi X., Zhang W., Wu G. et al. Exosomal MicroRNAs derived from human amniotic epithelial cells accelerate wound healing by promoting the proliferation and migration of fibroblasts. Stem Cells Int. 2018; 2018: 5420463. https://dx.doi.org/10.1155/2018/5420463
  32. Ma T., Fu B., Yang X., Xiao Y., Pan M. Adipose mesenchymal stem cell‐derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β‐catenin signaling in cutaneous wound healing. J. Cell. Biochem. 2019; 120(6): 10847-54. https://dx.doi.org/10.1002/jcb.28376
  33. Xu J., Bai S., Cao Y., Liu L., Fang Y., Du J. et al. miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab. Syndr. Obes. 2020; 13: 1259-70. https://dx.doi.org/10.2147/DMSO.S243549
  34. Zhang J., Chen C., Hu B., Niu X., Liu X., Zhang G. et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through erk1/2 signaling. Int. J. Biol. Sci. 2016; 12(12): 1472-87. https://dx.doi.org/10.7150/ijbs.15514
  35. Tao S.C., Guo S.C., Li M., Ke Q.F., Guo Y.P., Zhang C.Q. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl. Med. 2017; 6(3): 736-47. https://dx.doi.org/10.5966/sctm.2016-0275
  36. Sahin F., Kocak P., Gunes M.Y., Ozkan I., Yildirim E., Kala E.Y. In vitro wound healing activity of wheat-derived nanovesicles. Appl. Biochem. Biotechnol. 2019; 188(2): 381-94. https://dx.doi.org/10.1007/s12010-018-2913-1
  37. Zhang B., Shi Y., Gong A., Pan Z., Shi H., Yang H. et al. HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the Wnt response via modulation of YAP during cutaneous regeneration. Stem Cells. 2016; 34(10): 2485-500. https://dx.doi.org/10.1002/stem.2432
  38. Cheng Y., Zeng Q., Han Q., Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019; 10(4): 295-9. https://dx.doi.org/10.1007/s13238-018-0529-4
  39. Yuan R., Dai X., Li Y., Li C., Liu L. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-β2/Smad3 signaling. Mol. Med. Rep. 2021; 24(5): 758. https://dx.doi.org/10.3892/mmr.2021.12398
  40. Kim S.R., Zou X., Tang H., Puranik A.S., Abumoawad A.M., Zhu X.Y. et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells. J. Cell. Physiol. 2021; 236(2): 1332-44. https://dx.doi.org/10.1002/jcp.29940
  41. McReynolds M.R., Chellappa K., Chiles E., Jankowski C., Shen Y., Chen L. et al. NAD(+) flux is maintained in aged mice despite lower tissue concentrations. Cell. Syst. 2021; 12(12): 1160-72.e4. https://dx.doi.org/10.1016/j.cels.2021.09.001
  42. Li L., Zhang Y., Mu J., Chen J., Zhang C., Cao H. et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury. Nano Lett. 2020; 20(6): 4298-305. https://dx.doi.org/10.1021/acs.nanolett.0c00929
  43. Li Y., Xiao Q., Tang J., Xiong L., Li L. Extracellular vesicles: emerging therapeutics in cutaneous lesions. Int. J. Nanomedicine. 2021; 16: 6183-202. https://dx.doi.org/10.2147/ijn.S322356
  44. Li Y., Zhang J., Shi J., Liu K., Wang X., Jia Y. et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis. Stem Cell. Res. Ther. 2021; 12(1): 221. https://dx.doi.org/10.1186/s13287-021-02290-0
  45. Lee J.H., Yoon J.Y., Lee J.H., Lee H.H., Knowles J.C., Kim H.W. Emerging biogenesis technologies of extracellular vesicles for tissue regenerative therapeutics. J. Tissue Eng. 2021; 12: 204173142110190. https://dx.doi.org/10.1177/20417314211019015
  46. Savcı Y., Kırbaş O.K., Bozkurt B.T., Abdik E.A., Taşlı P.N., Şahin F. et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021; 12(11): 5144-56. https://dx.doi.org/10.1039/d0fo02953j
  47. Manconi M., Manca M.L., Marongiu F., Caddeo C., Castangia I., Petretto G.L. et al. Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. Int. J. Pharm. 2016; 506(1-2): 449-57. https://dx.doi.org/10.1016/j.ijpharm.2016.04.014
  48. Zeng L., Wang H., Shi W., Chen L., Chen T., Chen G. et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J. Nanobiotechnology. 2021; 19(1): 439. https://dx.doi.org/10.1186/s12951-021-01195-7
  49. Kim M., Park J.H. Isolation of Aloe saponaria – derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics. 2022; 14(9): 1905. https://dx.doi.org/10.3390/pharmaceutics14091905
  50. Leggio L., Arrabito G., Ferrara V., Vivarelli S., Paternò G., Marchetti B. et al. Mastering the tools: Natural versus artificial vesicles in nanomedicine. Adv. Healthc. Mat. 2020; 9(18): e2000731. https://dx.doi.org/10.1002/adhm.202000731
  51. Dad H.A., Gu T.W., Zhu A.Q., Huang L.Q., Peng L.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther. 2021; 29(1): 13-31. https://dx.doi.org/10.1016/j.ymthe.2020.11.030
  52. Yari H., Mikhailova M.V., Mardasi M., Jafarzadehgharehziaaddin M., Shahrokh S., Thangavelu L. et al. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell. Res. Ther. 2022; 13(1): 423. https://dx.doi.org/10.1186/s13287-022-03122-5
  53. Zhang K., Yu L., Li F. R., Li X., Wang Z., Zou X. et al. Topical application of exosomes derived from human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging. Int. J. Nanomedicine. 2020; 15, 2859-72. https://dx.doi.org/10.2147/ijn.S249751
  54. Shang H., Younas A., Zhang N. Recent advances on transdermal delivery systems for the treatment of arthritic injuries: From classical treatment to nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022; 14(3): e1778. https://dx.doi.org/10.1002/wnan.1778
  55. Cao L., Tian T., Huang Y., Tao S., Zhu X., Yang M. et al. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100. J. Nanobiotechnology. 2021; 19(1): 20. https://dx.doi.org/10.1186/s12951-020-00757-5
  56. Dan X., Li S., Chen H., Xue P., Liu B., Ju Y. et al. Tailoring biomaterials for skin anti-aging. Mater. Today Bio. 2024; 28: 101210. https://dx.doi.org/10.1016/j.mtbio.2024.101210
  57. Han X., Wu P., Li L., Sahal H.M., Ji C., Zhang J. et al. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell. Cycle. 2021; 20(5-6): 616-29. https://dx.doi.org/10.1080/15384101.2021.1894813
  58. Shin K.O., Ha D.H., Kim J.O., Crumrine D.A., Meyer J.M., Wakefield J.S. et al. Exosomes from human adipose tissue-derived mesenchymal stem cells promote epidermal barrier repair by inducing de Novo synthesis of ceramides in atopic dermatitis. Cells. 2020; 9(3): 680. https://dx.doi.org/10.3390/cells9030680
  59. Shiekh P.A., Singh A., Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020; 249: 120020. https://dx.doi.org/10.1016/j.biomaterials.2020.120020
  60. Wang C., Wang M., Xu T., Zhang X., Lin C., Gao W. et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019; 9(1): 65-76. https://dx.doi.org/10.7150/thno.29766
  61. Riau A.K., Ong H.S., Yam G.H.F., Mehta J.S. Sustained delivery system for stem cell-derived exosomes. Front. Pharmacol. 2019; 10: 1368. https://dx.doi.org/10.3389/fphar.2019.01368
  62. Wang M., Wang C., Chen M., Xi Y., Cheng W., Mao C. et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019; 13(9): 10279-93. https://dx.doi.org/10.1021/acsnano.9b03656
  63. Mehryab F., Rabbani S., Shahhosseini S., Shekari F., Fatahi Y., Baharvand H. et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater. 2020; 113: 42-62. https://dx.doi.org/10.1016/j.actbio.2020.06.036
  64. Jing H., He X., Zheng J. Exosomes and regenerative medicine: state of the art and perspectives. Transl. Res. 2018; 196: 1-16. https://dx.doi.org/10.1016/j.trsl.2018.01.005
  65. Hade M.D., Suire C.N., Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine. Cells. 2021; 10(8): 1959. https://dx.doi.org/10.3390/cells10081959
  66. Yang G., Chen G., Gu Z. Transdermal drug delivery for hair regrowth. Mol. Pharm. 2021; 18(2): 483-90. https://dx.doi.org/10.1021/acs.molpharmaceut.0c00041
  67. Gimona M., Pachler K., Laner-Plamberger S., Schallmoser K., Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int. J. Mol. Sci. 2017; 18(6): 1190. https://dx.doi.org/10.3390/ijms18061190
  68. Cha J.M., Shin E.K., Sung J.H., Moon G.J., Kim E.H., Cho Y.H. et al. Efficient scalable production of therapeutic microvesicles derived from human mesenchymal stem cells. Sci. Rep. 2018; 8(1): 1171. https://dx.doi.org/10.1038/s41598-018-19211-6
  69. Cao J., Wang B., Tang T., Lv L., Ding Z., Li Z. et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell. Res. Ther. 2020; 11(1): 206. https://dx.doi.org/10.1186/s13287-020-01719-2
  70. Chen T.S., Arslan F., Yin Y., Tan S.S., Lai R.C., Choo A.B. et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 2011; 9: 47. https://dx.doi.org/10.1186/1479-5876-9-47
  71. Lener T., Gimona M., Aigner L., Borger V., Buzas E., Camussi G. et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J. Extracell. Vesicles. 2015; 4: 30087. https://dx.doi.org/10.3402/jev.v4.30087
  72. Zhang Y., Bi J., Huang J., Tang Y., Du S., Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine. 2020; 15, 6917-34. https://dx.doi.org/10.2147/IJN.S264498
  73. Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020; 367(6478): eaau6977. https://dx.doi.org/10.1126/science.aau6977
  74. Livshits M.A., Khomyakova E., Evtushenko E.G., Lazarev V.N., Kulemin N.A., Semina S.E. et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci. Rep. 2015; 5: 17319. https://dx.doi.org/10.1038/srep17319
  75. Domenis R., Zanutel R., Caponnetto F., Toffoletto B., Cifu A., Pistis C. et al. Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis. Mediators Inflamm. 2017; 2017: 4814987. https://dx.doi.org/10.1155/2017/4814987
  76. He F., Liu H., Guo X., Yin B.C., Ye B.C. Direct exosome quantification via bivalent-cholesterol-labeled DNA anchor for signal amplification. Anal. Chem. 2017; 89(23): 12968-75. https://dx.doi.org/10.1021/acs.analchem.7b03919
  77. Yang J.S., Lee J.C., Byeon S.K., Rha K.H., Moon M.H. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal. Chem. 2017; 89(4): 2488-96. https://dx.doi.org/10.1021/acs.analchem.6b04634
  78. Willms E., Cabanas C., Mager I., Wood M. J.A., Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 2018; 9: 738. https://dx.doi.org/10.3389/fimmu.2018.00738
  79. Yang X.X., Sun C., Wang L., Guo X.L. New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Release. 2019; 308: 119-29. https://dx.doi.org/10.1016/j.jconrel.2019.07.021
  80. Alzhrani G.N., Alanazi S.T., Alsharif S.Y., Albalawi A.M., Alsharif A.A., Abdel-Maksoud M.S. et al. Exosomes: isolation, characterization, and biomedical applications. Cell Biol. Int. 2021; 45(9): 1807-31. https://dx.doi.org/10.1002/cbin.11620
  81. Chen Y., Zhu Q., Cheng L., Wang Y., Li M., Yang Q. et al. Exosome detection via the ultrafast-isolation system: EXODUS. Nat. Methods. 2021; 18(2): 212-8. https://dx.doi.org/10.1038/s41592-020-01034-x
  82. Reiner A.T., Witwer K.W., van Balkom B.W.M., de Beer J., Brodie C., Corteling R.L. et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl. Med. 2017; 6(8), 1730-9. https://dx.doi.org/10.1002/sctm.17-0055
  83. Ha D.H., Kim H.K., Lee J., Kwon H.H., Park G.H., Yang S.H. et al. Mesenchymal stem / stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells. 2020; 9(5): 1157. https://dx.doi.org/10.3390/cells9051157
  84. Ha D.H., Kim S.D., Lee J., Kwon H.H., Park G.H., Yang S.H. et al. Toxicological evaluation of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells. Regul. Toxicol. Pharmacol. 2020; 115: 104686. https://dx.doi.org/10.1016/j.yrtph.2020.104686
  85. Yi Y.W., Lee J.H., Kim S.-Y., Pack C.-G., Ha D.H., Park S.R. et al. Advances in analysis of biodistribution of exosomes by molecular imaging. Int. J. Mol. Sci. 2020; 21(2): 665. https://dx.doi.org/10.3390/ijms21020665
  86. Potter M., Lins B., Mietzsch M., Heilbronn R., Van Vliet K., Chipman P. et al. A simplified purification protocol for recombinant adeno-associated virus vectors. Mol. Ther. Methods Clin. Dev. 2014; 1: 14034. https://dx.doi.org/10.1038/mtm.2014.34
  87. Haraszti R.A., Miller R., Stoppato M., Sere Y.Y., Coles A., Didiot M.C. et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol. Ther. 2018; 26(12): 2838-47. https://dx.doi.org/10.1016/j.ymthe.2018.09.015
  88. Lee J.H., Ha D.H., Go H.K., Youn J., Kim H.K., Jin R.C. et al. Reproducible large-scale isolation of exosomes from adipose tissue-derived mesenchymal stem/stromal cells and their application in acute kidney injury. Int. J. Mol. Sci. 2020; 21(13): 4774. https://dx.doi.org/10.3390/ijms21134774
  89. Busatto S., Vilanilam G., Ticer T., Lin W.L., Dickson D.W., Shapiro S. et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018; 7(12): 273. https://dx.doi.org/10.3390/cells7120273

Received 16.01.2026

Accepted 10.02.2026

About the Authors

Vasiliy S. Chernyshev, PhD in Chemical Engineering, Head of the Biophotonics Laboratory, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4; Senior Researcher at the Biophotonics Laboratory,
Skolkovo Institute of Science and Technology, v_chernyshev@oparina4.ru, https://orcid.org/0000-0003-2372-7037
Elena G. Khilkevich, Dr. Med. Sci., obstetrician-gynecologist, doctor of physical and rehabilitation medicine, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4, e_khilkevich@oparina4.ru,
https://orcid.org/0000-0001-8826-8439
Dmitriy V. Kolesov, PhD in Physics and Mathematics, Senior Researcher at the Biophotonics Laboratory, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4, maedros@bk.ru, https://orcid.org/0000-0003-0270-2893
Inna A. Apolikhina, Honored Doctor of the Russian Federation, Dr. Med. Sci., Professor, Head of the Department of Aesthetic Gynecology and Rehabilitation, Professor at the Department of Obstetrics and Gynecology of the Department of Vocational Education, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Moscow, Russia, Ac. Oparina str., 4; Professor, Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University); President of the Association of Specialists in Aesthetic Gynecology, i_apolikhina@oparina4.ru, https://orcid.org/0000-0002-4581-6295

Similar Articles