ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

Oxidant–antioxidant profile of the endometrium: pathogenesis of hyperplastic processes

Boldyreva A.A, Shcherbakova L.N., Bugerenko A.E., Ogay D.S., Sichinava L.G., Panina O.B.

1) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) Lomonosov Moscow State University, Medical Research and Education Institute, Moscow, Russia; 3) N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia

Endometrial hyperplasia and endometrial cancer represent a major clinical burden and continue to raise substantial pathophysiological questions. Disturbances in redox homeostasis are increasingly recognized as an important contributor to the molecular landscape underlying the initiation and progression of these disorders. This review synthesizes clinical and experimental data exploring the redox profile of the endometrium in non-atypical and atypical hyperplasia, as well as in endometrial cancer, with the goal of integrating biochemical findings into a coherent framework for interpreting clinical phenotypes.
Evidence suggests that redox imbalance emerges early, already in non-atypical endometrial hyperplasia, and is characterized by enhanced lipid peroxidation, depletion of thiol groups, and reduced activities of key antioxidant enzymes. Atypical hyperplasia demonstrates a more heterogeneous redox phenotype, reflecting compensatory or adaptive cellular responses. In endometrial cancer, redox dysregulation becomes functionally bifurcated: moderate levels of reactive oxygen species (ROS) promote proliferative and survival signaling, whereas excessive ROS accumulation initiates programmed cell death pathways. Clinical studies increasingly report correlations between redox biomarkers and tumor burden, metastatic potential, patient survival, and treatment responsiveness, underscoring their prognostic relevance.
Conclusion: Current evidence confirms the potential of redox biomarkers in diagnostic assessment of hyperplastic and malignant endometrial disorders, since their changes correlate with the characteristics of the course of the disease, the extent of the tumor, and the response to treatment. Incorporating indicators of oxidant–antioxidant balance into routine evaluation may enhance risk stratification and support more individualized therapeutic decision-making.

Authors’ contributions: Boldyreva A.A. – developing the concept of the study, search and analysis of literature data, writing the text; Shcherbakova L.N. – developing the concept of the study, reviewing and editing the manuscript, final approval of the version for publication; Bugerenko A.E. Ogay D.S. – search and analysis of literature data; Sichinava L.G., Panina O.B. – scientific consulting, editing and final approval of the version for publication.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was conducted within the framework of the state assignment of the Lomonosov Moscow State University.
For citation: Boldyreva A.A, Shcherbakova L.N., Bugerenko A.E., Ogay D.S., Sichinava L.G., Panina O.B.
Oxidant-antioxidant profile of the endometrium: pathogenesis of hyperplastic processes.
Akusherstvo i Ginekologiy/Obstetrics and Gynecology. 2026; (2): 70-77 (in Russian)
https://dx.doi.org/10.18565/aig.2026.26

Keywords

endometrial hyperplasia
atypical endometrial hyperplasia
endometrial cancer
oxidative stress
antioxidant system
reactive oxygen species
lipid peroxidation
biomarkers

References

  1. Management of endometrial intraepithelial neoplasia or atypical endometrial hyperplasia: ACOG Clinical Consensus No. 5. Obstet. Gynecol. 2023; 142(3): 735-44. https://dx.doi.org/10.1097/AOG.0000000000005297
  2. Boureka E., Tsakiridis I., Kapetanios G., Michos G., Giouleka S., Liberis A. et al. Management of endometrial hyperplasia: a comparative review of guidelines. Cancers (Basel). 2025; 17(19): 3143. https://dx.doi.org/10.3390/cancers17193143
  3. Doherty M.T., Sanni O.B., Coleman H.G., Cardwell C.R., McCluggage W.G., Quinn D. et al. Concurrent and future risk of endometrial cancer in women with endometrial hyperplasia: a systematic review and meta-analysis. PLoS One. 2020; 15(4): e0232231. https://dx.doi.org/10.1371/journal.pone.0232231
  4. Chou A.J., Bing R.S., Ding D.C. Endometrial atypical hyperplasia and risk of endometrial cancer. Diagnostics (Basel). 2024; 14(22): 2471. https://dx.doi.org/10.3390/diagnostics14222471
  5. Yıldırım E., Türkler C., Görkem Ü., Şimşek Ö.Y., Yılmaz E., Aladağ H. The relationship between oxidative stress markers and endometrial hyperplasia: a case-control study. Turk. J. Obstet. Gynecol. 2021; 18(4): 298-303. https://dx.doi.org/10.4274/tjod.galenos.2021.16132
  6. Gentry-Maharaj A., Karpinskyj C. Current and future approaches to screening for endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2020; 65: 79-97. https://dx.doi.org/10.1016/j.bpobgyn.2019.12.006
  7. Ring K.L., Mills A.M., Modesitt S.C. Endometrial hyperplasia. Obstet. Gynecol. 2022; 140(6): 1061-75. https://dx.doi.org/10.1097/AOG.0000000000004989
  8. Galani A., Stavros S., Moustakli E., Potiris A., Zikopoulos A., Anagnostaki I. et al. Endometrial hyperplasia: current insights into epidemiology, risk factors, and clinical management. Cancers (Basel). 2025; 18(1): 148. https://dx.doi.org/10.3390/cancers18010148
  9. Niu S., Molberg K., Castrillon D.H., Lucas E., Chen H. Biomarkers in the diagnosis of endometrial precancers. Molecular characteristics, candidate immunohistochemical markers, and promising results of three-marker panel: current status and future directions. Cancers (Basel). 2024; 16(6): 1159. https://dx.doi.org/10.3390/cancers16061159
  10. Bukato K., Kostrzewa T., Gammazza A.M., Gorska-Ponikowska M., Sawicki S. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. Cell Commun. Signal. 2024; 22(1): 205. https://dx.doi.org/10.1186/s12964-024-01583-0
  11. Lee J., Yeo S.G., Lee J.M., Kim S.S., Jeong Y.J., Oh T.I. et al. The role of reactive oxygen species in the pathogenesis and treatment of endometrial cancer. Front. Med. (Lausanne). 2025; 12: 1662794. https://dx.doi.org/10.3389/fmed.2025.1662794
  12. Sies H. Oxidative eustress: the physiological role of oxidants. Sci. China Life Sci. 2023; 66(8): 1947-8. https://dx.doi.org/10.1007/s11427-023-2336-1
  13. Sies H., Jones D.P. Reactive oxygen species as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020; 21(7): 363-83. https://dx.doi.org/10.1038/s41580-020-0230-3
  14. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024; 25(1): 13-33. https://dx.doi.org/10.1038/s41580-023-00645-4
  15. Sarmiento-Salinas F.L., Perez-Gonzalez A., Acosta-Casique A., Ix-Ballote A., Diaz A., Treviño S. et al. Reactive oxygen species: role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021; 284: 119942. https://dx.doi.org/10.1016/j.lfs.2021.119942
  16. Jomova K., Alomar S.Y., Alwasel S.H., Nepovimova E., Kuca K., Valko M. Several lines of antioxidant defense against oxidative stress. Arch. Toxicol. 2024; 98(5): 1323-67. https://dx.doi.org/10.1007/s00204-024-03696-4
  17. Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014; 24(10): R453-62. https://dx.doi.org/10.1016/j.cub.2014.03.034
  18. Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024; 1871(2): 119573. https://dx.doi.org/10.1016/j.bbamcr.2023.119573
  19. Zdrojkowski Ł., Jasiński T., Ferreira-Dias G., Pawliński B., Domino M. The role of NF-κB in endometrial diseases in humans and animals: a review. Int. J. Mol. Sci. 2023; 24(3): 2901. https://dx.doi.org/10.3390/ijms24032901
  20. Huang L., Shi L., Li M., Yin X., Ji X. Oxidative stress in endometriosis: sources, mechanisms and therapeutic potential of antioxidants. Int. J. Mol. Med. 2025; 55(5): 1-11. https://doi.org/10.3892/ijmm.2025.5513
  21. Drizi A., Djokovic D., Lagana A.S., Van Herendael B. Impaired inflammatory state of the endometrium: a multifaceted approach. Prz. Menopauzalny. 2020; 19(2): 90-100. https://dx.doi.org/10.5114/pm.2020.97863
  22. AlAshqar A., Reschke L., Kirschen G.W., Borahay M.A. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol. Reprod. 2021; 105(1): 7-31. https://dx.doi.org/10.1093/biolre/ioab054
  23. Ruan L.Y., Lai Z.Z., Shi J.W., Yang H.L., Ye J.F., Xie F. et al. Excess heme promotes the migration and infiltration of macrophages in endometrial hyperplasia complicated with abnormal uterine bleeding. Biomolecules. 2022; 12(6): 849. https://dx.doi.org/10.3390/biom12060849
  24. Moustakli E., Stavros S., Katopodis P., Skentou C., Potiris A., Panagopoulos P. et al. Oxidative stress and the NLRP3 inflammasome: focus on female fertility and reproductive health. Cells. 2025; 14(1): 36. https://dx.doi.org/10.3390/cells14010036
  25. Krishna Kumar K., Upadhyaya K., Cn R.T. Bcl-2 may contribute to evolution of endometrial hyperplasia, but it isn't a factor in subsequent carcinogenesis. Arch. Razi Inst. 2024; 79(4): 827-32. https://dx.doi.org/10.32592/ARI.2024.79.4.827
  26. Russo M., Newell J.M., Budurlean L., Houser K.R., Sheldon K., Kesterson J. et al. Mutational profile of endometrial hyperplasia and risk of progression to endometrioid adenocarcinoma. Cancer. 2020; 126(12): 2775-83. https://dx.doi.org/10.1002/cncr.32822
  27. Aksakal S.E., Diktaş E.G., Pay R.E., Tapisiz Ö.L., Timur B., Korkmaz V. et al. The relationship between Thiol / disulfide homeostasis and endometrial hyperplasia in patients with abnormal uterine bleeding. Sağlık Akad. Kastamonu. 2022; 7(2): 340-51. https://dx.doi.org/10.25279/sak.1101029
  28. Pejić S., Todorović A., Stojiljković V., Cvetković D., Lučić N., Radojičić R.M. et al. Superoxide dismutase and lipid hydroperoxides in blood and endometrial tissue of patients with benign, hyperplastic and malignant endometrium. An. Acad. Bras. Cienc. 2008; 80(3): 515-22. https://dx.doi.org/10.1590/S0001-37652008000300011
  29. Шоонаева Н., Узакова А., Масыбаева А., Маматазизова А. Окислительный стресс при патологии эндометрия у женщин репродуктивного возраста. Репродуктивное здоровье. Восточная Европа. 2022; 12(5): 540-6. [Shoonaeva N., Uzakova A., Masybaeva A., Mamatazizova A. Oxidative stress in endometrial pathology in women of reproductive age. Reproductive health. Eastern Europe. 2022; 12(5): 540-6 (in Russian)]. https://dx.doi.org/10.34883/PI.2022.12.5.004
  30. Атыканов А.О., Асымбекова Г.У., Масыбаева А.А. Перекисное окисление липидов и система антиоксидантной защиты при гиперпластических процессах эндометрия у женщин. Ульяновский медико-биологический журнал. 2019; 4: 44-9. [Atykanov A.O., Asymbekova G.U., Masybaeva A.A. Lipid peroxidation and antioxidant protection system in women with endometrial hyperplastic processes. Ulyanovsk Medico-biological Journal. 2019; 4: 44-9 (in Russian)]. https://dx.doi.org/10.34014/2227-1848-2019-4-44-49
  31. Gómez-Zubeldia M.A., Bazo A.P., Gabarre J.J., Nogales A.G., Palomino J.C. Oxidative stress in endometrial hyperplasia. Menopause. 2008; 15(2): 363-8. https://dx.doi.org/10.1097/gme.0B013e318093E646
  32. Błachnio-Zabielska A.U., Sadowska P., Zdrodowski M., Laudański P., Szamatowicz J., Kuźmicki M. The interplay between oxidative stress and sphingolipid metabolism in endometrial cancer. Int. J. Mol. Sci. 2024; 25(19): 10243. https:/dx./doi.org/10.3390/ijms251910243
  33. Проскурнина Е.В., Фёдорова М.В., Вознесенский В.И., Соснова Е.А. Активность НАД(Ф)Н-оксидоредуктаз и оксидативный гомеостаз. Технологии живых систем. 2023; 20(4): 31-44. [Proskurnina E.V., Fedorova M.V., Voznesensky V.I., Sosnova E.A. NAD(P)H oxidoreductase activity and oxidative homeostasis. Living Systems Technologies. 2023; 20(4): 31-44 (in Russian)]. https://dx.doi.org/10.18127/j20700997-202304-03
  34. Sezgin B., Pirinççi F., Camuzcuoğlu A., Erel Ö., Neşelioğlu S., Camuzcuoğlu H. Assessment of thiol disulfide balance in early-stage endometrial cancer. J. Obstet. Gynaecol. Res. 2020; 46(7): 1140-7. https://dx.doi.org/10.1111/jog.14301
  35. Tossetta G., Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur. J. Pharmacol. 2023; 941: 175503. https://dx.doi.org/10.1016/j.ejphar.2023.175503
  36. Kuusiniemi E., Karihtala P., Puistola U., Ahtikoski A., Urpilainen E. Oxidative stress-regulating enzymes and endometrial cancer survival in relation to metformin intake in diabetic patients. Anticancer Res. 2023; 43(12): 5545-54. https://dx.doi.org/10.21873/anticanres.16756
  37. Chen Y., Li Y., Huang L., Du Y., Gan F., Li Y. et al. Antioxidative stress: inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance. Oxid. Med. Cell. Longev. 2021; 2021: 6620306. https://dx.doi.org/10.1155/2021/6620306
  38. Hu M., Sun D., Yu J., Fu Y., Qin Z., Huang B. et al. Brusatol sensitizes endometrial hyperplasia and cancer to progestin by suppressing NRF2-TET1-AKR1C1-mediated progestin metabolism. Lab. Invest. 2022; 102(12): 1335-45. https://dx.doi.org/10.1038/s41374-022-00816-5
  39. Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative stress in cancer. Cancer Cell. 2020; 38(2): 167-97. https://dx.doi.org/10.1016/j.ccell.2020.06.001
  40. Žalytė E. Ferroptosis, metabolic rewiring, and endometrial cancer. Int. J. Mol. Sci. 2023; 25(1): 75. https://dx.doi.org/10.3390/ijms25010075
  41. Zhou Q., Meng Y., Li D., Yao L., Le J., Liu Y. et al. Ferroptosis in cancer: from molecular mechanisms to therapeutic strategies. Signal Transduct. Target. Ther. 2024; 9(1): 55. https://dx.doi.org/10.1038/s41392-024-01769-5
  42. Адамян Л.В., Пивазян Л.Г., Курбатова К.С., Маилова К.С., Степанян А.А. Оксидативный стресс, ферроптоз, соматические мутации, антиоксидантная терапия и эндометриоз: новый взгляд на проблему. Проблемы репродукции. 2024; 30(6): 32-44. [Adamyan L.V., Pivazyan L.G., Kurbatova K.S., Mailova K.S., Stepanyan A.A. Oxidative stress, ferroptosis, somatic mutations, antioxidant therapy, and endometriosis: a new perspective on the issue. Russian Journal of Human Reproduction. 2024; 30(6): 32-44 (in Russian)]. https://dx.doi.org/10.17116/repro20243006132
  43. Yu Q., Ren L., Ren F., Li F. Integrating mitophagy and ferroptosis in endometrial carcinogenesis (Review). Oncol. Lett. 2025; 31(1): 40. https://dx.doi.org/10.3892/ol.2025.15393
  44. Murakami H., Hayashi M., Terada S., Ohmichi M. Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers. Life Sci. 2023; 325: 121753. https://dx.doi.org/10.1016/j.lfs.2023.121753
  45. Qiang B., Kang Y.F., Yang J.L., Su H.C., Wang Z., Zhang C.M. et al. Prognostic value of VEGF in endometrial cancer. Medicine (Baltimore). 2024; 103: e40933. https://dx.doi.org/10.1097/MD.0000000000040933
  46. Aggarwal V., Tuli H.S., Varol A., Thakral F., Yerer M.B., Sak K. et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019; 9(11): 735. https://dx.doi.org/10.3390/biom9110735
  47. Madeddu C., Sanna E., Gramignano G., Tanca L., Cherchi M.C., Mola B. et al. Correlation of leptin, proinflammatory cytokines and oxidative stress with tumor size and disease stage of endometrioid (Type I) endometrial cancer and review of the underlying mechanisms. Cancers (Basel). 2022; 14(2): 268. https://dx.doi.org/10.3390/cancers14020268
  48. Yan J., Ye G., Shao Y. High expression of the ferroptosis‐associated MGST1 gene in relation to poor outcome and maladjusted immune cell infiltration in uterine corpus endometrial carcinoma. J. Clin. Lab. Anal. 2022; 36(4): e24317. https://dx.doi.org/10.1002/jcla.24317

Received 28.01.2026

Accepted 11.02.2026

About the Authors

Anastasia A. Boldyreva, obstetrician-gynecologist, Junior Researcher at the Department of Aesthetic Gynecology and Rehabilitation, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia, 4 Ac. Oparin str., Moscow, 117997, Russia; PhD student, Department of Obstetrics and Gynecology, Faculty of Fundamental Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 27-1 Lomonosovsky Ave., Moscow, 119991, Russia, boldyreva.anastasi@gmail.com, https://orcid.org/0009-0003-4679-3229
Liya N. Shcherbakova, Dr. Med. Sci., Associate Professor at the Department of Obstetrics and Gynecology, Faculty of Fundamental Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 27-1 Lomonosovsky Ave., Moscow, 119991, Russia, liya.fbm@gmail.com, https://orcid.org/0000-0003-2681-4777
Andrey E. Bugerenko, Dr. Med. Sci., Associate Professor at the Department of Obstetrics and Gynecology, Faculty of Fundamental Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 27-1 Lomonosovsky Ave., Moscow, 119991, Russia, jeddit@yandex.ru, https://orcid.org/0000-0001-5691-7588
Dmitry S. Ogay, Dr. Med. Sci., Head of the Department of Breast Tumors and Gynecologic Oncology, University Clinic, Medical Research and Education Institute,
Lomonosov Moscow State University, 27-1 Lomonosovsky Ave., Moscow, 119991, Russia, dogay2008@yandex.ru, https://orcid.org/0009-0009-1723-5336
Lali G. Sichinava, Dr. Med. Sci., Professor, G.M. Savelyeva Department of Obstetrics and Gynecology, Faculty of Pediatrics, N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, 1-6 Ostrovityanov str., Moscow, 117513, Russia, lalisichinava@gmail.com, https://orcid.org/0000-0003-0820-4772
Olga B. Panina, Dr. Med. Sci., Head of the Department of Obstetrics and Gynecology, Professor, Department of Obstetrics and Gynecology, Faculty of Fundamental Medicine, Medical Research and Education Institute, Lomonosov Moscow State University, 27-1 Lomonosovsky Ave., Moscow, 119991, Russia, olgapanina@yandex.ru,
https://orcid.org/0000-0003-1397-6208

Similar Articles