Artificial intelligence technologies in gynecology
Mozes V.G., Kotov R.M., Rudaeva E.V., Elgina S.I., Mozes K.B., Vavin G.V.
The review includes the scientific data from national and foreign studies, 90% of which were published within the last five years. Their topic is related to the testing and analysis of the effectiveness of artificial intelligence (AI) in the diagnosis, treatment and prevention of gynecological pathology. It was concluded that the effectiveness of AI algorithms in many aspects surpasses experts in the diagnosis of cervical cancer, endometrial cancer, ovarian cancer and endometriosis, namely, in evaluating the results of direct and indirect imaging. The literature data show that the integration of AI into clinical practice significantly reduces diagnostic time and is very promising. At the same time, the work of AI in assessing cytology and histology has shown contradictory results. In cervical cytology, AI has surpassed specialists, but in the case of histology of cervical cancer, the results obtained so far do not allow for AI to be fully integrated into clinical practice.
Large language models (LLM) offer significant potential for patients and doctors, with ChatGPT being a primary example. Today, the chatbot often provides correct answers to questions from patients seeking gynecological advice. However, the accuracy of its responses when the questions are more specific and detailed is still not sufficient.
The integration of professional activities with AI-based management systems may reduce the error rate in clinical practice, but their widespread implementation is still limited.
Conclusion: The review demonstrates significant progress in the application of AI in gynecology, especially in the diagnosis of cervical, endometrial, ovarian, and endometriosis cancers. AI algorithms show high effectiveness in analyzing medical images, often surpassing traditional methods in accuracy and speed. However, the use of AI faces several ethical, legal, and practical challenges, such as transparency of decisions, responsibility for mistakes, and integration into clinical practice. Despite this, the potential of AI to improve diagnosis and optimize the work of an obstetrician-gynecologist is obvious.
Authors’ contributions: Kotov R.M. – developing the concept and design of the study; Elgina S.I., Rudaeva E.V., Vavin G.V. – collecting and processing the material; Moses V.G. – writing the text; Moses K.B. – editing the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Mozes V.G., Kotov R.M., Rudaeva E.V., Elgina S.I., Mozes K.B., Vavin G.V.
Artificial intelligence technologies in gynecology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (8): 16-25 (in Russian)
https://dx.doi.org/10.18565/aig.2025.92
Keywords
References
- Ламоткин А.И., Корабельников Д.И., Ламоткин И.А., Лившиц С.А., Перевалова Е.Г. Искусственный интеллект в здравоохранении и медицине: история ключевых событий, его значимость для врачей, уровень развития в разных странах. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2024; 17(2): 243-50. [Lamotkin A.I., Korabelnikov D.I., Lamotkin I.A., Livshitz S.A., Perevalova E.G. Artificial intelligence in healthcare and medicine: the history of key events, its significance for doctors, the level of development in different countries. Farmakoekonomika. Modern pharmacoeconomics and pharmacoepidemiology. 2024; 17(2): 243-50 (in Russian)]. https://doi.org/10.17749/2070-4909/farmakoekonomika.2024.254
- Greeven M. China and AI in 2025: What global executives must know to stay ahead. Forbes. Available at: https://www.forbes.com/sites/markgreeven/2024/12/23/china-and-ai-in-2025-what-global-executives-must-know-to-stay-ahead
- Dhombres F., Bonnard J., Bailly K., Maurice P., Papageorghiou A.T., Jouannic J.M. Contributions of artificial intelligence reported in obstetrics and gynecology journals: systematic review. J. Med. Internet Res. 2022; 24(4): e35465. https://dx.doi.org/10.2196/35465
- Brandão M., Mendes F., Martins M., Cardoso P., Macedo G., Mascarenhas T. et al. Revolutionizing women's health: a comprehensive review of artificial intelligence advancements in gynecology. J. Clin. Med. 2024; 13(4): 1061. https://dx.doi.org/10.3390/jcm13041061
- Eshraghi N., Ghaemi M., Shabannejad Z., Bazmi E., Foroozesh M., Haddadi M.et al. Analysis of medico-legal claims related to deliveries: Caesarean section vs. vaginal delivery. PLoS ONE. 2024; 19(11): e0312614. https://dx.doi.org/10.1371/journal.pone.0312614
- Vickers H., Jha S. Medicolegal issues in gynaecology. Obstetrics, gynaecology and reproductive medicine. 2020; 30(2): 43-7. https://dx.doi.org/10.1016/j.ogrm.2019.11.004
- Khan I., Khare B.K. Exploring the potential of machine learning in gynecological care: a review. Arch. Gynecol. Obstet. 2024; 309(6): 2347-65. https://dx.doi.org/10.1007/s00404-024-07479-1
- Recker F., Gembruch U., Strizek B. Clinical ultrasound applications in obstetrics and gynecology in the year 2024. J. Clin. Med. 2024; 13(5): 1244. https://dx.doi.org/10.3390/jcm13051244
- Коломеец Е.В., Тарасова Л.П., Потехина Т.Д., Виривская Е.В., Бахтияров К.Р. Ошибки в диагностике интраэпителиальных поражений и рака шейки матки и современные возможности улучшения качества первичного скрининга. Архив акушерства и гинекологии им. В.Ф. Снегирёва. 2024; 11(1): 57-67. [Kolomeets E.V., Tarasova L.P., Potekhina T.D., Virivskaya E.V., Bakhtiyarov K.R. Errors in the diagnosis of intraepithelial lesions and cervical cancer and modern opportunities to improve the quality of primary screening. V.F. Snegirev archives of obstetrics and gynecology. 2024; 11(1): 57-67 (in Russian)]. https://dx.doi.org/10.17816/2313-8726-2024-11-1-57-67
- Akash R.S., Islam R., Badhon S.S.I., Hossain K.T. CerviXpert: a multi-structural convolutional neural network for predicting cervix type and cervical cell abnormalities. Digit. Health. 2024; 10: 20552076241295440. https://dx.doi.org/10.1177/20552076241295440
- Liao W, Xu X. Progress in the application research of cervical cancer screening developed by artificial intelligence in large populations. Discov. Oncol. 2025; 16(1): 1282. https://dx.doi.org/10.1007/s12672-025-03102-0
- Li J., Adobo S.D., Shi H., Judicael K.A.W., Lin N., Gao L. Screening methods for cervical cancer. ChemMedChem. 2024; 19(16): e202400021. https://dx.doi.org/10.1002/cmdc.202400021
- Giansanti D., Lastrucci A., Pirrera A., Villani S., Carico E., Giarnieri E. AI in cervical cancer cytology diagnostics: a narrative review of cutting-edge studies. Bioengineering (Basel). 2025; 12(7): 769. https://dx.doi.org/10.3390/bioengineering12070769
- Mehlhorn G., Münzenmayer C., Benz M., Kage A., Beckmann M.W., Wittenberg T. Computer-assisted diagnosis in colposcopy: results of a preliminary experiment? Acta Cytol. 2012; 56(5): 554-9. https://dx.doi.org/10.1159/000341546
- Park J., Yang H., Roh H.J., Jung W., Jang G.J. Encoder-weighted W-Net for unsupervised segmentation of cervix region in colposcopy images. Cancers (Basel). 2022; 14(14): 3400. https://dx.doi.org/10.3390/cancers14143400
- Ledwaba L., Saidu R., Malila B., Kuhn L., Mutsvangwa T.E.M. Automated analysis of digital medical images in cervical cancer screening: a systematic review. medRxiv. [Preprint]. 2024: 2024.09.27.24314466. https://dx.doi.org/10.1101/2024.09.27.24314466
- Asiedu M.N., Simhal A., Chaudhary U., Mueller J.L., Lam C.T., Schmitt J.W. et al. Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, pocket colposcope. IEEE Trans. Biomed. Eng. 2019; 66(8): 2306-18. https://dx.doi.org/10.1109/TBME.2018.2887208
- Sampaio A.F., Rosado L., Vasconcelos M.J. Towards the mobile detection of cervical lesions: a region-based approach for the analysis of microscopic images. IEEE Access. 2021; 9: 152188-205. https://dx.doi.org/10.1109/ACCESS.2021.3126486
- Hussain E., Mahanta L.B., Das C.R., Talukdar R.K. A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network. Tissue Cell. 2020; 65: 101347. https://dx.doi.org/10.1016/j.tice.2020.101347
- Xue P., Xu H.M., Tang H.P., Wu W.Q., Seery S., Han X. et al. Assessing artificial intelligence enabled liquid-based cytology for triaging HPV-positive women: a population-based cross-sectional study. Acta Obstet. Gynecol. Scand. 2023; 102(8): 1026-33. https://dx.doi.org/10.1111/aogs.14611
- Park Y.R., Kim Y.J., Ju W., Nam K., Kim S., Kim K.G. Comparison of machine and deep learning for the classification of cervical cancer based on cervicography images. Sci. Rep. 2021; 11(1): 16143. https://dx.doi.org/10.1038/s41598-021-95748-3
- Fu L., Xia W., Shi W., Cao G.X., Ruan Y.T., Zhao X.Y. et al. Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test. Int. J. Med. Inform. 2022; 159: 104675. https://dx.doi.org/10.1016/j.ijmedinf.2021.104675
- Urushibara A., Saida T., Mori K., Ishiguro T., Sakai M., Masuoka S. et al. Diagnosing uterine cervical cancer on a single T2-weighted image: comparison between deep learning versus radiologists. Eur. J. Radiol. 2021; 135: 109471. https://dx.doi.org/10.1016/j.ejrad.2020.109471
- Tanos V., Neofytou M., Tanos P., Pattichis C.S., Pattichis M.S. Computer-aided diagnosis by tissue image analysis as an optical biopsy in hysteroscopy. Int. J. Mol. Sci. 2022; 23(21): 12782. https://dx.doi.org/10.3390/ijms232112782
- Takahashi Y., Sone K., Noda K., Yoshida K., Toyohara Y., Kato K. et al. Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy. PLOS One. 2021; 16(3): e0248526. https://dx.doi.org/10.1371/journal.pone.0248526
- Urushibara A., Saida T., Mori K., Ishiguro T., Inoue K., Masumoto T. et al. The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists. BMC Med. Imaging. 2022; 22(1): 80. https://dx.doi.org/10.1186/s12880-022-00808-3
- Petrila O., Stefan A.E., Gafitanu D., Scripcariu V., Nistor I. The applicability of artificial intelligence in predicting the depth of myometrial invasion on MRI studies-a systematic review. Diagnostics (Basel). 2023; 13(15): 2592. https://dx.doi.org/10.3390/diagnostics13152592
- Hart G.R., Yan V., Huang G.S., Liang Y., Nartowt B.J., Muhammad W. et al. Population-based screening for endometrial cancer: human vs. machine intelligence. Front. Artif. Intell. 2020; 3: 539879. https://dx.doi.org/10.3389/frai.2020.539879
- Lee B., Chang S.J., Kwon B.S., Son J.H., Lim M.C., Kim Y.H. et al. Clinical guidelines for ovarian cancer: the Korean Society of gynecologic oncology guidelines. J. Gynecol. Oncol. 2024; 35(1): e43. https://dx.doi.org/10.3802/jgo.2024.35.e43
- Xu H.L., Gong T.T., Liu F.H., Chen H.Y., Xiao Q., Hou Y. et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. EClinicalMedicine. 2022; 53: 101662. https://dx.doi.org/10.1016/j.eclinm.2022.101662
- Ma L., Huang L., Chen Y., Zhang L., Nie D., He W. et al. AI diagnostic performance based on multiple imaging modalities for ovarian tumor: a systematic review and meta-analysis. Front. Oncol. 2023; 13: 1133491. https://dx.doi.org/10.3389/fonc.2023.1133491
- Barnard M.E., Pyden A., Rice M.S., Linares M., Tworoger S.S., Howitt B.E. et al. Inter-pathologist and pathology report agreement for ovarian tumor characteristics in the Nurses' Health Studies. Gynecol Oncol. 2018;150(3): 521-526. https://dx.doi.org/10.1016/j.ygyno.2018.07.003
- Zeng X, Li Z, Dai L, Li J, Liao L, Chen W. Machine learning in ovarian cancer: a bibliometric and visual analysis from 2004 to 2024. Discov. Oncol. 2025; 16(1): 755. https://dx.doi.org/10.1007/s12672-025-02416-3
- Breen J., Allen K., Zucker K., Adusumilli P., Scarsbrook A., Hall G. et al. Artificial intelligence in ovarian cancer histopathology: a systematic review. NP J. Precis. Oncol. 2023; 7(1): 83. https://dx.doi.org/10.1038/s41698-023-00432-6
- Ioannidou A., Machairiotis N., Stavros S., Potiris A., Karampitsakos T., Pantelis A.G. et al. Comparison of surgical interventions for endometrioma: a systematic review of their efficacy in addressing infertility. Biomedicines. 2024; 12(12): 2930. https://dx.doi.org/10.3390/biomedicines12122930
- Greene A.D., Lang S.A., Kendziorski J.A., Sroga-Rios J.M., Herzog T.J., Burns K.A. Endometriosis: where are we and where are we going? Reproduction. 2016; 152(3): R63-78. https://dx.doi.org/10.1530/REP-16-0052
- Bendifallah S., Puchar A., Suisse S., Delbos L., Poilblanc M., Descamps P. et al. Machine learning algorithms as new screening approach for patients with endometriosis. Sci. Rep. 2022; 12(1): 639. https://dx.doi.org/10.1038/s41598-021-04637-2
- Sivajohan B., Elgendi M., Menon C., Allaire C., Yong P., Bedaiwy M.A. Clinical use of artificial intelligence in endometriosis: a scoping review. NP J. Digit. Med. 2022; 5(1): 109. https://dx.doi.org/10.1038/s41746-022-00638-1
- Littmann M., Selig K., Cohen-Lavi L., Frank Y., Hönigschmid P., Kataka E. et al. Validity of machine learning in biology and medicine increased through collaborations across fields of expertise. Nat. Mach. Intell. 2020; 2(1): 18-24. https://dx.doi.org/10.1038/s42256-019-0139-8
- Balica A., Dai J., Piiwaa K., Qi X., Green A.N., Philips N. et al. Augmenting endometriosis analysis from ultrasound data with deep learning. Medical imaging 2023: ultrasonic imaging and tomography. 2023; 12470: 118-23. https://dx.doi.org/10.1117/12.2653940
- Hu P., Gao Y., Zhang Y., Sun K. Ultrasound image-based deep learning to differentiate tubal-ovarian abscess from ovarian endometriosis cyst. Front. Physiol. 2023; 14: 1101810. https://dx.doi.org/10.3389/fphys.2023.1101810
- Cetera G.E., Tozzi A.E., Chiappa V., Castiglioni I., Merli C.E.M., Vercellini P. Artificial intelligence in the management of women with endometriosis and adenomyosis: can machines ever be worse than humans? J. Clin. Med. 2024; 13(10): 2950. https://dx.doi.org/10.3390/jcm13102950
- Voelker R. The promise and pitfalls of AI in the complex world of diagnosis, treatment, and disease management. JAMA. 2023; 330(15): 1416-19. https://dx.doi.org/10.1001/jama.2023.19180
- Sahni N.R., Carrus B. Artificial intelligence in U.S. health care delivery. N. Engl. J. Med. 2023; 389(4): 348-58. https://dx.doi.org/10.1056/NEJMra2204673
- Kanjee Z., Crowe B., Rodman A. Accuracy of a generative Artificial intelligence model in a complex diagnostic challenge. JAMA. 2023; 330(1): 78-80. https://dx.doi.org/10.1001/jama.2023.8288
- Eriksen A.V., Möller S., Ryg J. Use of GPT-4 to diagnose complex clinical cases. NEJM AI. 2023; 19(1): AIp2300031. https://dx.doi.org/10.1056/AIp2300031
- Ozgor B.Y., Simavi M.A. Accuracy and reproducibility of ChatGPT’s free version answers about endometriosis. Int. J. Gynaecol. Obstet. 2024; 165(2): 691-5. https://dx.doi.org/10.1002/ijgo.15309
- Jiang V.S., Bormann C.L. Artificial intelligence in the in vitro fertilization laboratory: a review of advancements over the last decade. Fertil. Steril. 2023; 120(1): 17-23. https://dx.doi.org/10.1016/j.fertnstert.2023.05.149
- McCallum C., Riordon J., Wang Y., Kong T., You J.B., Sanner S. et al. Deep learning-based selection of human sperm with high DNA integrity. Commun. Biol. 2019; 2: 250. https://dx.doi.org/10.1038/s42003-019-0491-6
- Cherouveim P., Velmahos C., Bormann C.L. Artificial intelligence for sperm selection-a systematic review. Fertil. Steril. 2023; 120(1): 24-31. https://dx.doi.org/10.1016/j.fertnstert.2023.05.157
- Salih M., Austin C., Warty R.R., Tiktin C., Rolnik D.L., Momeni M. et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum. Reprod. Open. 2023; 2023(3): hoad031. https://dx.doi.org/10.1093/hropen/hoad031
- Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Франкевич В.Е., Калинина Е.А. Изучение аналитической обработки клинико-анамнестических и эмбриологических данных пациентов в программе вспомогательных репродуктивных технологий различными методами машинного обучения. Акушерство и гинекология. 2024; 3: 96-107. [Drapkina Yu.S., Makarova N.P., Vasilev R.A., Amelin V.V., Frankevich V.E., Kalinina E.A. Application of various machine learning techniques to the analysis of clinical, anamnestic, and embryological data of patients undergoing assisted reproductive technologies. Obstetrics and Gynecology. 2024; (3): 96-107 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.281
- Драпкина Ю.С., Макарова Н.П., Чаговец В.В., Васильев Р.А., Амелин В.В., Калинина Е.А. Использование машинного обучения для анализа липидного профиля среды культивирования и прогнозирования эффективности вспомогательных репродуктивных технологий. Акушерство и гинекология. 2025; 2: 91-9. [Drapkina Yu.S., Makarova N.P., Chagovets V.V., Vasiliev R.A., Amelin V.V., Kalinina E.A. Using machine learning to analyze the lipid profile of culture medium and predict the efficacy of assisted reproductive technologies. Obstetrics and Gynecology. 2025; (2): 91-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.280
- Alowais S.A., Alghamdi S.S., Alsuhebany N., Alqahtani T., Alshaya A.I., Almohareb S.N. et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med. Educ. 2023; 23(1): 689. https://dx.doi.org/10.1186/s12909-023-04698-z
- Boudi A.L., Boudi M., Chan C., Boudi F.B. Ethical challenges of Artificial intelligence in medicine. Cureus. 2024; 16(11): e74495. https://dx.doi.org/10.7759/cureus.74495
- Mohanasundari S.K., Kalpana M., Madhusudhan U., Vasanthkumar K., B R., Singh R. et al. Can Artificial intelligence replace the unique nursing role? Cureus. 2023; 15(12): e51150. https://dx.doi.org/10.7759/cureus.51150
- World Health Organization. Ethics and governance of artificial intelligence for health. WHO Guidance. Geneva: World Health Organization; 2021. Available from: https://www.who.int/publications/i/item/9789240029200
Received 04.04.2025
Accepted 12.08.2025
About the Authors
Vadim G. Mozes, Dr. Med. Sci., Professor, Director of the Medical Institute, Kemerovo State University, 650000, Kemerovo region – Kuzbass, Kemerovo, Krasnaya str., 6, +7(904)573-24-43, vadimmoses@gmail.com, https://orcid.org/0000-0002-3269-9018Roman M. Kotov, Dr. Sci. (Econ.), Vice-Rector for Digital Transformation, Kemerovo State University, 650000, Kemerovo region – Kuzbass, Kemerovo, Krasnaya str., 6, +7(3842)58-05-90, kotov@kemsu.ru, https://orcid.org/0000-0003-0238-3466
Elena V. Rudaeva, PhD, Associate Professor, Department of Obstetrics and Gynecology named after G.A. Ushakova, Kemerovo State Medical University, Ministry of Health
of Russia, 650056, Russia, Kemerovo region – Kuzbass, Kemerovo, Voroshilova str., 22a, +7(3842)73-48-56, rudaevae@mail.ru, https://orcid.org/0000-0002-6599-9906
Svetlava I. Elgina, Dr. Med. Sci., Professor, Department of Obstetrics and Gynecology named after G.A. Ushakova, Kemerovo State Medical University, Ministry of Health
of Russia, 650056, Russia, Kemerovo region – Kuzbass, Kemerovo, Voroshilova str., 22a, +7(3842)73-48-56, elginas.i@mail.ru, https://orcid.org/0000-0002-6966-2681
Kira B. Mozes, Teaching Assistant, Department of Polyclinic Therapy and Nursing, Kemerovo State Medical University, Ministry of Health of Russia, 650056, Russia,
Kemerovo region – Kuzbass, Kemerovo, Voroshilova str., 22a, +7(950)276-11-85, kbsolo@mail.ru, https://orcid.org/0000-0003-2906-6217
Grigory V. Vavin, Deputy Chief Physician for Laboratory Diagnostics, Kuzbass Regional Clinical Hospital named after S.V. Belyaev, 650066, Russia, Kemerovo region – Kuzbass, Kemerovo, Oktyabrsky Ave., 22, +7(961)710-55-50, okb-lab@yandex.ru, https://orcid.org/0000-0003-0179-0983
Corresponding author: Elena V. Rudaeva, rudaevae@mail.ru