The potential role of the nervous system in endometrial cancer and endometrial hyperplasia as one of the risk factors for neotransformation

Levakov S.A., Gromova T.A., Gvazava E.N.

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russia

Endometrial hyperplasia is one of the common pathologies of the uterine mucosa among reproductive-aged patients. It can be considered as a potential risk factor for malignant transformation of the endometrium with subsequent development of endometrioid adenocarcinoma. Studies have demonstrated that the presence of nerve fibres is a part of the malignant microenvironment that plays an active role in tumour progression and invasion. Due to the increasing rate of these conditions, it is relevant to consider the relationship of uterine nerve fibres with the possible development and progression of endometrial adenocarcinoma. Endometrial hyperplasia may serve as an indicator for the development of this cancer. This review also describes the possible promising role of nicotinic acetylcholine receptors in hyperplastic changes and endometrial cancer.
Conclusion: Further research is required to establish the interactions between hormonal status, uterine nerve fibres and the development of endometrial cancer which could lead to a broader range of diagnostic and prognostic possibilities. These aspects may also help to guide the development of innovative medicines for this group of patients, thereby improving outcomes and quality of life.

Authors’ contributions: Levakov S.A. – developing the concept of the study; Gromova T.A., Gvazava E.N. – collecting and processing the material, writing the text; Levakov S.A., Gromova T.A. – editing the text.  
Conflicts of interest: Authors declare lack of the possible conflicts of interests.
Funding: The study was conducted without sponsorship.
For citation: Levakov S.A., Gromova T.A., Gvazava E.N. The potential role of the nervous system in 
endometrial cancer and endometrial hyperplasia as one of the risk factors for neotransformation.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (10): 27-33 (in Russian)
https://dx.doi.org/10.18565/aig.2024.126

Keywords

endometrial hyperplasia
uterine cancer
nervous system
nicotinic acetylcholine receptors

References

  1. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Гиперплазия эндометрия. 2021. [Ministry of Health of the Russian Federation. Clinical guidelines. Endometrial hyperplasia. 2021. (in Russian)].
  2. Сабанцев М.А., Шрамко С.В., Левченко В.Г., Волков О.А., Третьякова Т.В. Гиперплазии эндометрия: без атипии и с атипией. Гинекология. 2021; 23(1): 18-24. [Sabantsev M.A., Shramko S.V., Levchenko V.G., Volkov O.A., Tretyakova T.V. Endometrial hyperplasia: without atypia and with atypia. Gynecology. 2021; 23(1): 18-24. (in Russian)]. https://dx.doi.org/10.26442/20795696.2021.1.200666.
  3. McCoy C.A., Coleman H.G., McShane C.M., McCluggage W.G., Wylie J., Quinn D. et al. Factors associated with interobserver variation amongst pathologists in the diagnosis of endometrial hyperplasia: A systematic review. PLoS One. 2024; 19(4): e0302252. https://dx.oi.org/10.1371/journal.pone.0302252.
  4. Travaglino A., Raffone A., Saccone G., Mollo A., De Placido G., Insabato L. et al. Endometrial hyperplasia and the risk of coexistent cancer: WHO versus EIN criteria. Histopathology. 2019; 74(5): 676-87. https://dx.doi.org/10.1111/his.13776.
  5. Пестрикова Т.Ю., Юрасова Е.А., Ковалева Т.Д., Юрасов И.В., Князева Т.П., Адамян Е.С., Маштагова Х.М. Современный взгляд на тактику ведения пациенток с патологическими процессами эндометрия в пери- и постменопаузе. Гинекология. 2020; 22(4): 49-54. [Pestrikova T.Yu., Yurasova E.A., Kovaleva T.D., Yurasov I.V., Knyazeva T.P., Adamyan E.S., Mashtagova Kh.M. Modern view on management tactics of patients with endometrial pathologic processes in the perimenopausal period and postmenopause. Gynecology. 2020; 22(4): 49-54. (in Russian)]. https://dx.doi.org/10.26442/20795696.2020.4.200211.
  6. Яковлев П.П., Коган И.Ю. Эндометрий и синдром поликистозных яичников. Журнал акушерства и женских болезней. 2018; 67(4): 60-6. [Yakovlev P.P., Kogan I.Yu. Endometrium and polycystic ovary syndrome. Journal of Obstetrics and Women’s Diseases. 2018; 67(4): 60-6. (in Russian)]. https:/dx./doi.org/10.17816/JOWD67460-66.
  7. Зиядова Э.Р., Мокану А.М. Сахарный диабет и его связь с гиперплазией эндометрия в пери- и постменопаузальном периоде. В кн.: Наука, образование, общество: тенденции и перспективы развития. Материалы Всероссийской научно-практической конференции (Чебоксары, 11 января 2023 г.). Чебоксары: Интерактив плюс; 2023: 11-3. [Ziyadova E.R., Mokanu A.M. Diabetes mellitus and its association with peri- and postmenopausal endometrial hyperplasia. In: Science, education, society: trends and development prospects. Materials of the All-Russian Scientific and Practical Conference (Cheboksary, January 11, 2023). Cheboksary: Interactive Plus; 2023: 11-3. (in Russian)].
  8. Ryan N.A.J., McMahon R., Tobi S., Snowsill T., Esquibel S., Wallace A.J. et al. The proportion of endometrial tumours associated with Lynch syndrome (PETALS): A prospective cross-sectional study. PLoS Med. 2020; 17(9): e1003263. https://dx.doi.org/10.1371/journal.pmed.1003263.
  9. Colombo N., Creutzberg C., Amant F., Bosse T., González-Martín A., Ledermann J. et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann. Oncol. 2016; 27(1): 16-41. https://dx.doi.org/10.1093/annonc/mdv484.
  10. Гаджиева Л.Т., Пронин С.М., Павлович С.В., Киселев В.И. Роль генетических и эпигенетических изменений в развитии атипической гиперплазии и начального рака эндометрия. Акушерство и гинекология. 2021; 5: 48-54. [Gadzhieva L.T., Pronin S.M., Pavlovich S.V., Kiselev V.I. The role of genetic and epigenetic changes in the development of atypical hyperplasia and early-stage endometrial cancer. Obstetrics and Gynecology. 2021; (5): 48-54 (in Russian)]. https://dx.doi.org/10.18565/aig.2021.5.48-54.
  11. Kontis V., Bennett J.E., Mathers C.D., Li G., Foreman K., Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017; 389(10076): 1323-35. https://dx.doi.org/10.1016/S0140-6736(16)32381-9.
  12. Uterine cancer survival by stage at diagnosis. Available at: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/uterine-cancer/survival#heading-Zero (accessed 20 April 2022).
  13. Bankenahally R., Krovvidi H. Autonomic nervous system: anatomy, physiology, and relevance in anaesthesia and critical care medicine. BJA Educ. 2016; 16(11): 381-7. https://dx.doi.org/10.1093/bjaed/mkw011.
  14. Wehrwein E.A., Orer H.S., Barman S.M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr. Physiol. 2016; 6(3): 1239-78. https://dx.doi.org/10.1002/cphy.c150037.
  15. Pinsard M., Mouchet N., Dion L., Bessede T., Bertrand M., Darai E. et al. Anatomic and functional mapping of human uterine innervation. Fertil. Steril. 2022; 117(6): 1279-88. https://dx.doi.org/10.1016/j.fertnstert.2022.02.013.
  16. Astruc A., Roux L., Robin F., Sall N.R., Dion L., Lavoué V. et al. Advanced insights into human uterine innervation: implications for endometriosis and pelvic pain. J. Clin. Med. 2024; 13(5): 1433. https://dx.doi.org/10.3390/jcm13051433.
  17. Yadav G., Rao M., Gothwal M., Singh P., Kathuria P., Sharma P.P. Detection of nerve fibers in the eutopic endometrium of women with endometriosis, uterine fibroids and adenomyosis. Obstet. Gynecol. Sci. 2021; 64(5): 454-61. https://dx.doi.org/10.5468/ogs.21114.
  18. Coxon L., Horne A.W., Vincent K. Pathophysiology of endometriosis-associated pain: a review of pelvic and central nervous system mechanisms. Best Pract. Res. Clin. Obstet. Gynaecol. 2018; 51: 53-67. https://dx.doi.org/10.1016/j.bpobgyn.2018.01.014.
  19. Ditto A., Ferla S., Martinelli F., Bogani G., Leone Roberti Maggiore U., Raspagliesi F. Pelvic neuro-visualization: an anatomical illustration of the autonomic pelvic nervous network in gynecologic surgery. J. Minim. Invasive Gynecol. 2024; 31(10): 821-2. https://dx.doi.org/10.1016/j.jmig.2024.04.014.
  20. Brauer M.M. Plasticity in uterine innervation: state of the art. Curr. Protein Pept. Sci. 2017; 18(2): 108-19. https://dx.doi.org/10.2174/1389203717666160322145411.
  21. Theis V., Theiss C. Progesterone effects in the nervous system. Anat. Rec. 2019; 302(8): 1276-86. https://doi.org/10.1002/ar.24121.
  22. Blanchard Z., Vahrenkamp J.M., Berrett K.C., Arnesen S., Gertz J. Estrogen-independent molecular actions of mutant estrogen receptor 1 in endometrial cancer. Genome Res. 2019; 29(9): 1429-41. https://dx.doi.org/10.1101/gr.244780.118.
  23. Constantine G.D., Kessler G., Graham S., Goldstein S.R. Increased incidence of endometrial cancer following the women’s health initiative: an assessment of risk factors. J. Womens Health. 2019; 28(2): 237-43. https://dx.doi.org/10.1089/jwh.2018.6956.
  24. Rodriguez A.C., Blanchard Z., Maurer K.A., Gertz J. Estrogen signaling in endometrial cancer: a key oncogenic pathway with several open questions. Horm. Cancer. 2019; 10(2-3): 51-63. https://dx.doi.org/10.1007/s12672-019-0358-9.
  25. Silverman D.A., Martinez V.K., Dougherty P.M., Myers J.N., Calin G.A., Amit M. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res. 2021; 81(6): 1431-40. https://dx.doi.org/10.1158/0008-5472.CAN-20-2793.
  26. Wang Y., Li J., Wen S., Yang X., Zhang Y., Wang Z. et al. CHRM3 is a novel prognostic factor of poor prognosis in patients with endometrial carcinoma. Am. J. Transl. Res. 2015; 7(5): 902-11.
  27. Saloman J.L., Albers K.M., Rhim A.D., Davis B.M. Can stopping nerves, stop cancer? Trends Neurosci. 2016; 39(12): 880-9. https://dx.doi.org/10.1016/j.tins.2016.10.002.
  28. Zahalka A.H., Arnal-Estapé A., Maryanovich M., Nakahara F., Cruz C.D., Finley L.W.S. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science. 2017; 358(6361): 321-6. https://doi.org/10.1126/science.aah5072.
  29. Abbink K., Zusterzeel P.L.M., Geurts-Moespot A., van der Steen R., Span P.N., Sweep F.C.G.J. Prognostic significance of VEGF and components of the plasminogen activator system in endometrial cancer. J. Cancer Res. Clin. Oncol. 2020; 146(7): 1725-35. https://dx.doi.org/10.1007/s00432-020-03225-7.
  30. Sahoo S.S., Lombard J.M., Ius Y., O'Sullivan R., Wood L.G., Nahar P. et al. Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women. Mol. Cancer Res. 2018; 16(2): 309-21. https://dx.doi.org/10.1158/1541-7786.MCR-17-0466.
  31. Stein M.N., Malhotra J., Tarapore R.S., Malhotra U., Silk A.W., Chan N. et al. Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J. Immunother. Cancer. 2019; 7(1): 136. https:/dx./doi.org/10.1186/s40425-019-0599-8.
  32. Mitamura T., Dong P., Ihira K., Kudo M., Watari H. Molecular-targeted therapies and precision medicine for endometrial cancer. Jpn. J. Clin. Oncol. 2019; 49(2): 108-20. https://dx.doi.org/10.1093/jjco/hyy159.
  33. Ma J., Yuan S., Cheng J., Kang S., Zhao W., Zhang J. Substance P promotes the progression of endometrial adenocarcinoma. Int. J. Gynecol. Cancer. 2016; 26(5): 845-50. https://dx.doi.org/10.1097/IGC.0000000000000683.
  34. Bekbossynova A., Zharylgap A., Filchakova O. Venom-derived neurotoxins targeting nicotinic acetylcholine receptors. Molecules. 2021; 26(11): 3373. https://dx.doi.org/10.3390/molecules26113373.
  35. Zhang B., Zhao J., Wang Y., Xu H., Gao B.O., Zhang G. et al. CHRM3 is a novel prognostic factor of poor prognosis and promotes glioblastoma progression via activation of oncogenic invasive growth factors. Oncol. Res. 2023; 31(6): 917-27. https://dx.doi.org/10.32604/or.2023.030425.
  36. Кульбацкий Д.С., Бычков М.Л., Люкманова Е.Н. Никотиновые ацетилхолиновые рецепторы человека. Часть I: строение, функция и роль в нейромышечной передаче и работе ЦНС. Биоорганическая химия. 2018; 44(6): 595-607. [Kulbatskii D.S., Lyukmanova E.N., Bychkov M.L. Human nicotinic acetylcholine receptors. Part I: Structure, function, and role in neuromuscular transmission and cns functioning. Russian Journal of Bioorganic Chemistry. 2018; 44(6): 595-607. (in Russian)]. https://dx.doi.org/10.1134/S0132342318060052.
  37. Sun Q., Jin C. Cell signaling and epigenetic regulation of nicotine-induced carcinogenesis. Environ Pollut. 2024; 345: 123426. https://dx.doi.org/10.1016/j.envpol.2024.123426.
  38. Borroni V., Barrantes F.J. Homomeric and heteromeric α7 nicotinic acetylcholine receptors in health and some central nervous system diseases. Membranes. 2021; 11(9): 664. https://dx.doi.org/10.3390/membranes11090664.
  39. Matta J.A., Gu S., Davini W.B., Bredt D.S. Nicotinic acetylcholine receptor redux: discovery of accessories opens therapeutic vistas. Science. 2021; 373(6556): eabg6539. https://dx.doi.org/10.1126/science.abg6539.
  40. Qi J.C., Xue W.Y., Zhang Y.P., Qu C.B., Lu B.S., Yin Y.W. et al. Cholinergic α5 nicotinic receptor is involved in the proliferation and invasion of human prostate cancer cells. Oncol. Rep. 2020; 43(1): 159-68. https://dx.doi.org/10.3892/or.2019.7411.
  41. Hao M., Liu X., Guo S.W. Activation of α7 nicotinic acetylcholine receptor retards the development of endometriosis. Reprod. Biol. Endocrinol. 2022; 20(1): 85. https://dx.doi.org/10.1186/s12958-022-00955-w.
  42. Peng-Fei H., A-Ru-Na, Hui C., Hong-Yu W., Jin-Shan C. Activation of alpha7 nicotinic acetylcholine receptor protects bovine endometrial tissue against LPS-induced inflammatory injury via JAK2/STAT3 pathway and COX-2 derived prostaglandin E2. Eur. J. Pharmacol. 2021; 900: 174067. https://dx.doi.org/10.1016/j.ejphar.2021.174067.
  43. Liu Y., Qian J., Sun Z., Zhangsun D., Luo S. Cervical cancer correlates with the differential expression of nicotinic acetylcholine receptors and reveals therapeutic targets. Mar. Drugs. 2019; 17(5): 256. https://dx.oi.org/10.3390/md17050256.
  44. Chen F., Qin T., Zhang Y., Wei L., Dang Y., Liu P. et al. Reclassification of endometrial cancer and identification of key genes based on neural-related genes. Front. Oncol. 2022; 12: 951437. https://dx.doi.org/10.3389/fonc.2022.951437.
  45. Español P., Luna R., Soler C., Caruana P., Altés-Arranz A. et. al. Neural plasticity of the uterus: New targets for endometrial cancer? Womens Health (Lond). 2022; 18: 17455057221095537. doi: 10.1177/17455057221095537.
  46. Mónica Brauer M., Smith P.G. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci. 2015; 187: 1-17. https://dx.doi.org/10.1016/j.autneu.2014.11.009.
  47. Sadighparvar S., Darband S.G., Ghaderi-Pakdel F., Mihanfar A., Majidinia M. Parasympathetic, but not sympathetic denervation, suppressed colorectal cancer progression. Eur. J. Pharmacol. 2021; 913: 174626. https://dx.doi.org/10.1016/j.ejphar.2021.174626.
  48. Park H., Lee C.H. The contribution of the nervous system in the cancer progression. BMB Rep. 2024; 57(4): 167-75. https://dx.doi.org/10.5483/BMBRep.2024-0019.
  49. Bakhtou H., Olfatbakhsh A., Deezagi A., Ahangari G. The expression of dopamine receptors gene and their potential role in targeting breast cancer cells with selective agonist and antagonist drugs. Could it be the novel insight to therapy? Curr. Drug Discov. Technol. 2019; 16(2): 184-97. https://dx.doi.org/10.2174/1570163815666180130101421.
  50. Wang Y., Liu Z., Tian Y., Zhao H., Fu X. Periampullary cancer and neurological interactions: current understanding and future research directions. Front. Oncol. 2024; 14: 1370111. https://dx.doi.org/10.3389/fonc.2024.1370111.

Received 27.05.2024

Accepted 16.10.2024

About the Authors

Sergey A. Levakov, Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(495)609-14-00, levakoff@yandex.ru,
https://orcid.org/0000-0002-4591-838X
Tatyana A. Gromova, PhD, Teaching Assistant at the Department of Obstetrics and Gynecology, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(495)609-14-00, tgromova928@yandex.ru,
https://orcid.org/0000-0001-6104-9842
Ekaterina N. Gvazava, PhD student at the Department of Obstetrics and Gynecology, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University,
Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(495)609-14-00, https://orcid.org/0000-0001-9062-5351

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.