All that practitioners should know about ductus venosus

Yarygina T.A., Gasanova R.M., Marzoeva O.V., Sypchenko E.V., Gus A.I.

1) A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russia, Moscow, Russia; 2) Patrice Lumumba Peoples' Friendship University of Russia, Moscow, Russia; 3) Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia
This article reviews essential information for clinical specialists regarding the ductus venosus, a functionally significant component of the unique fetal circulation system. It outlines the main stages of formation and the normal anatomical structure of the venous system, which plays a crucial role in providing the oxygenation required for the physiological development of the fetus. The article also describes a technique for obtaining ultrasound images of all components of the afferent-venous complex of the placenta, with a focus on the venous duct. It discusses various types of umbilical-portal-systemic venous shunts that can be detected during the prenatal stage and their association with high risks of syndromic pathology and functional disorders in the fetus. These cases necessitate an individualized approach for the examination and management of each clinical scenario. Additionally, this article covers the guidelines and indications for Doppler assessment of blood flow velocity curves in the venous duct for various complications in both singleton and multiple pregnancies. The authors present data on the normal postnatal closure of the ductus venosus and potential manifestations of a persistent open ductus venosus in children, a rare pathology that significantly affects newborns.
Conclusion: Raising awareness among practitioners regarding the importance of perinatal ultrasound diagnosis for ductus venosus pathologies and hemodynamic disorders will enhance the efficiency of medical care, ultimately reducing perinatal and childhood morbidity and mortality.

Authors' contributions: Yarygina T.A., Gasanova R.M., Gus A.I. – conception and design of the study; Yarygina T.A., Marzoeva O.V., Sypchenko E.V. – data collection and analysis, drafting of the manuscript; Gasanova R.M., Gus A.I. – manuscript editing.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: The study was carried out as part of the applied research theme 123020300017-1.
For citation: Yarygina T.A., Gasanova R.M., Marzoeva O.V.,
Sypchenko E.V., Gus A.I. All that practitioners should know about ductus venosus.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (9): 22-32 (in Russian)
https://dx.doi.org/10.18565/aig.2023.127

Keywords

ductus venosus
fetal hypoxia
Doppler ultrasound
fetal growth restriction
placental dysfunction
anomalies of the venous system
fetal genetic pathology
congenital heart disease
fetal malformations
prenatal diagnosis

References

  1. Kiserud T. Hemodynamics of the ductus venosus. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999; 84(2): 139-47. https://dx.doi.org/10.1016/s0301-2115(98)00323-6. Erratum in: Eur. J. Obstet. Gynecol. Reprod. Biol. 2000; 91(2): 209.
  2. Kiserud T. In a different vein: the ductus venosus could yield much valuable information. Ultrasound Obstet. Gynecol. 1997; 9(6): 369-72. https://dx.doi.org/10.1046/j.1469-0705.1997.09060369.x.
  3. Ferrazzi E., Lees C., Acharya G. The controversial role of the ductus venosus in hypoxic human fetuses. Acta Obstet. Gynecol. Scand. 2019; 98(7): 823-9. https://dx.doi.org/10.1111/aogs.13572.
  4. Salomon L.J., Alfirevic Z., Berghella V., Bilardo C.M., Chalouhi G.E., Da Silva Costa F. et al. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2022; 59(6): 840-56. https://dx.doi.org/10.1002/uog.24888. Erratum in: Ultrasound Obstet. Gynecol. 2022; 60(4): 591.
  5. Приказ Минздрава России от 20.10.2020 N1130н "Об утверждении Порядка оказания медицинской помощи по профилю "акушерство и гинекология" (Зарегистрировано в Минюсте России 12.11.2020 N 60869). 68с. [ Order of the Ministry of Health of Russia dated October 20, 2020 N1130n "On approval of the Procedure for the provision of medical care in the field of obstetrics and gynecology" (Registered with the Ministry of Justice of Russia on November 12, 2020 N 60869). 68p. (in Russian)].
  6. Митьков В.В., ред. Клиническое руководство по ультразвуковой диагностике. М.: Видар; 1996; т.2: 257-75. [Mitkov V.V. Clinical guide to ultrasound diagnostics. Moscow: Vidar; 1996; vol. 2: 257-75. (in Russian)].
  7. Vesalius A. Anatomicarum Gabrielis Falloppii observationum examen. Venetiis: Apud F. de Franciscis senensem; 1564.
  8. Arantius G.C. (De humano foetus libellous. Leiden: Ex officina Felicis Lopes de Haro; 1564.
  9. Zampieri F., Thiene G., Basso C., Zanatta A. The three fetal shunts: A story of wrong eponyms J. Anat. 2021; 238(4): 1028-35. https://dx.doi.org/10.1111/joa.13357.
  10. Денисов С.Д., Пивченко П.Г. Эпонимы в анатомии. Учебно-методическое пособие. Минск: БГМУ; 2012. 85с. Доступно по: https://pdfslide.net/documents/-55721346497959fc0b91fa2f.html?page=27 [Denisov S.D., Pivchenko P.G. Eponyms in anatomy. Teaching aid. Minsk: BSMU; 2012. 85p. (in Russian)]. Available at: https://pdfslide.net/documents/-55721346497959fc0b91fa2f.html?page=27
  11. Tabulae anatomicae clarissimi viri Bartholomaei Eustachii quas tenebris tandem vindicatas. Praefatione, notisque illustravit, ipso suae bibliothecae dedicationis die publici juris fecit Jo. Maria Lancisius. Amsterdam. Published by R.G. Wetstenisu. 1722. 276 p.
  12. Chacko A.W., Reynolds S.R. Embryonic development in the human of the sphincter of the ductus venosus. Anat. Rec. 1953; 115(2): 151-73.https://dx.doi.org/10.1002/ar.1091150203.
  13. Meyer W.W., Lind J. The ductus venosus and the mechanism of its closure. Arch. Dis. Child. 1966; 41(220): 597-605. https://dx.doi.org/10.1136/adc.41.220.597.
  14. Leonidas J.C., Fellows R.A. Congenital absence of the ductus venosus: with direct connection between the umbilical vein and the distal inferior vena cava. AJR Am. J. Roentgenol. 1976; 126(4): 892-5. https://dx.doi.org/10.2214/ajr.126.4.892.
  15. Fliegel C.P., Nars P.W. Aberrant umbilical vein. Pediatr. Radiol. 1984;14(1): 55-6. https://dx.doi.org/10.1007/BF02386735.
  16. Currarino G., Stannard M.W., Kolni H. Umbilical vein draining into the inferior vena cava via the internal iliac vein, bypassing the liver. Pediatr. Radiol. 1991; 21(4): 265-6. https://dx.doi.org/10.1007/BF02018619.
  17. Strouse P.J., Di Pietro M.A., Barr M. Jr. Pitfall: anomalous umbilical vein and absent ductus venosus in association with right congenital diaphragmatic hernia. Pediatr. Radiol. 1997; 27(8): 651-3. https://dx.doi.org/10.1007/s002470050205.
  18. Toomayan G.A., Gaca A.M. Aberrant course of the umbilical vein in a newborn with Cornelia de Lange syndrome. Pediatr. Radiol. 2009; 39(4): 406-8.https://dx.doi.org/10.1007/s00247-009-1164-2.
  19. Yagel S., Kivilevitch Z., Achiron R. The fetal venous system: normal embryology. In: Yagel S., Silverman N.H., Gembruch U., eds. Fetal cardiology. London: Martin Dunitz; 2003: 321-32.
  20. Larsen W.J. Essentials of human embryology. New York: Churchill Livingstone; 1998: 134-40.
  21. Mavrides E., Moscoso G., Carvalho J.S., Campbell S., Thilaganathan B. The anatomy of the umbilical, portal and hepatic venous systems in the human fetus at 14-19 weeks of gestation. Ultrasound Obstet. Gynecol. 2001; 18(6): 598-604. https://dx.doi.org/10.1046/j.0960-7692.2001.00581.x.
  22. Byrd N., Grabel L. Hedgehog signaling in murine vasculogenesis and angiogenesis. Trends Cardiovasc. Med. 2004; 14(8): 308-13.https://dx.doi.org/10.1016/j.tcm.2004.09.003.
  23. Лукашенко А.В., Затолокина Е.С. Особенности формирования сердечно-сосудистой системы в пренатальном периоде с акцентом на функциональные характеристики. Матрица научного познания. 2021; 11-1: 266-71. [Lukashenko A.V., Zatolokina E.S. Features of the formation of the cardiovascular system in the prenatal period with an emphasis on functional characteristics. Matrix of Scientific Knowledge. 2021; (11-1): 266-71.(in Russian)].
  24. Romero R. Giants in Obstetrics and Gynecology sSeries: Philippe Jeanty, MD, PhD, a pioneer in the study of fetal anatomy, biometry, growth, and congenital anomalies. Am. J. Obstet. Gynecol. 2021; 225(1): 3-9.https://dx.doi.org/10.1016/j.ajog.2021.03.043.
  25. Jeanty P., Romero R., Hobbins J.C. Vascular anatomy of the fetus. J. Ultrasound Med. 1984; 3(3): 113-22. https://dx.doi.org/10.7863/jum.1984.3.3.113.
  26. Kiserud T., Eik-Nes S.H., Blaas H.G., Hellevik L.R. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet. 1991; 338(8780): 1412-4.https://dx.doi.org/10.1016/0140-6736(91)92720-m.
  27. Kivilevitch Z., Gindes L., Deutsch H., Achiron R. In-utero evaluation of the fetal umbilical-portal venous system: two- and three-dimensional ultrasonic study. Ultrasound Obstet. Gynecol. 2009; 34(6): 634-42. https://dx.doi.org/10.1002/uog.7459.
  28. Achiron R., Kivilevitch Z. Fetal umbilical-portal-systemic venous shunt: in-utero classification and clinical significance. Ultrasound Obstet. Gynecol. 2016; 47(6): 739-47. https://dx.doi.org/10.1002/uog.14906.
  29. Nagy R.D., Iliescu D.G. Prenatal diagnosis and outcome of umbilical-portal-systemic venous shunts: experience of a tertiary center and proposal for a new complex type. Diagnostics (Basel). 2022; 12(4): 873. https://dx.doi.org/10.3390/diagnostics12040873.
  30. Demirci O., Akay H.Ö. Prenatal diagnosis of abnormality of the umbilical portal DV complex: difficulty in universal classification due to various alternative routes in hepatic circulation for placental drainage. J. Matern. Fetal Neonatal Med. 2022; 35(20): 3872-84. https://dx.doi.org/10.1080/14767058.2020.1842870.
  31. Wu H., Tao G., Cong X., Li Q., Zhang J., Ma Z., Zhang Z. Prenatal sonographic characteristics and postnatal outcomes of umbilical-portal-systemic venous shunts under the new in-utero classification: A retrospective study. Medicine (Baltimore). 2019;98(2):e14125. https://dx.doi.org/10.1097/MD.0000000000014125.
  32. Zhu L., Wu H., Cong X., Ma Z., Tao G. Ultrasonographic characteristics and outcome of Type III umbilical-portal-systemic venous shunt. Med. Ultrason. 2022; 24(1):14-8. https://dx.doi.org/10.11152/mu-3163.
  33. Bhide A., Acharya G., Baschat A., Bilardo C.M., Brezinka C., Cafici D. et al. ISUOG Practice Guidelines (updated): use of Doppler velocimetry in obstetrics. Ultrasound Obstet. Gynecol. 2021; 58(2): 331-9. https://dx.doi.org/10.1002/uog.23698.
  34. Практические рекомендации ISUOG: использование ультразвуковых допплеровских технологий в акушерстве. Международное общество ультразвуковой диагностики в акушерстве и гинекологии (ISUOG). Ультразвуковая и функциональная диагностика. 2014; 5: 87-98. [Оригинальный текст руководства ISUOG. Bhide A., Acharya G., Bilardo C.M., Brezinka C., Cafici D., Hernandez-Andrade E. et al. ISUOG Practice Guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet. Gynecol. 2013; 41(2): 233-9.] https://dx.doi.org/10.1002/uog.12371 Available at: http://www.isuog.org
  35. Kagan K.O., Wright D., Nicolaides K.H. First‐trimester contingent screening for trisomies 21, 18 and 13 by fetal nuchal translucency and ductus venosus flow and maternal blood cell‐free DNA testing. Ultrasound Obstet. Gynecol. 2015; 45(1): 42-7. https://dx.doi.org/10.1002/uog.14691.
  36. Николаидес К. Ультразвуковое исследование в 11–13+6 недель беременности. Пер. с англ. Михайлов А., Некрасова Е. Санкт-Петербург: ИД «Петрополис»; 2007. 144 p.
  37. Kiserud T. Ductus venosus-a longitudinal Doppler velocimetric study of the human fetus. J. Matern. Fetal Investig. 1992; 2: 5-11.
  38. Kessler J., Rasmussen S., Hanson M., Kiserud T. Longitudinal reference ranges for ductus venosus flow velocities and waveform indices. Ultrasound Obstet. Gynecol. 2006; 28(7): 890-8. https://dx.doi.org/10.1002/uog.3857.
  39. Axt-Fliedner R., Diler S., Georg T., Friedrich M., Diedrich K. Reference values of ductus venosus blood flow velocities and waveform indices from 10 to 20 weeks of gestation. Arch. Gynecol. Obstet. 2004; 269(3): 199-204.https://dx.doi.org/10.1007/s00404-003-0484-y.
  40. Arya B., Krishnan A., Donofrio M.T. Clinical utility of ductus venosus flow in fetuses with right-sided congenital heart disease. J. Ultrasound Med. 2014; 33(9): 1563-71. https://dx.doi.org/10.7863/ultra.33.9.1563.
  41. Tongprasert F., Srisupundit K., Luewan S., Wanapirak C., Tongsong T. Normal reference ranges of ductus venosus Doppler indices in the period from 14 to 40 weeks' gestation. Gynecol. Obstet. Invest. 2012; 73(1): 32-7. https://dx.doi.org/ 10.1159/000329322.
  42. Seravalli V., Miller J.L., Block-Abraham D., Baschat A.A. Ductus venosus Doppler in the assessment of fetal cardiovascular health: an updated practical approach. Acta Obstet. Gynecol. Scand. 2016; 95(6): 635-44.https://dx.doi.org/10.1111/aogs.12893.
  43. Wagner P., Sonek J., Klein J., Hoopmann M., Abele H., Kagan K.O. First-trimester ultrasound screening for trisomy 21 based on maternal age, fetal nuchal translucency, and different methods of ductus venosus assessment. Prenat. Diagn. 2017; 37(7): 680-5. https://dx.doi.org/10.1002/pd.5065.
  44. Maiz N., Valencia C., Kagan K.O., Wright D., Nicolaides K.H. Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009; 33(5): 512-7.https://dx.doi.org/10.1002/uog.6330.
  45. Timmerman E., Oude Rengerink K., Pajkrt E., Opmeer B.C., van der Post J.A.M., Bilardo C.M. Ductus venosus pulsatility index measurement reduces the false-positive rate in first-trimester screening. Ultrasound Obstet. Gynecol. 2010; 36(6): 661-7. https;//dx.doi.org/10.1002/uog.7706.
  46. Chelemen T., Syngelaki A., Maiz N., Allan L., Nicolaides K.H. Contribution of ductus venosus Doppler in first-trimester screening for major cardiac defects. Fetal Diagn. Ther. 2011; 29(2): 127-34. https://dx.doi.org/10.1159/000322138.
  47. Wagner P., Eberle K., Sonek J., Berg C., Gembruch U., Hoopmann M. et al. First-trimester ductus venosus velocity ratio as a marker of major cardiac defects. Ultrasound Obstet. Gynecol. 2019; 53(5): 663-8. https://dx.doi.org/10.1002/uog.20099.
  48. Minnella G.P., Crupano F.M., Syngelaki A., Zidere V., Akolekar R., Nicolaides K.H. Diagnosis of major heart defects by routine first-trimester ultrasound examination: association with increased nuchal translucency, tricuspid regurgitation and abnormal flow in ductus venosus. Ultrasound Obstet. Gynecol. 2020; 55(5): 637-44. https://dx.doi.org/10.1002/uog.21956.
  49. Maiz N., Nicolaides K.H. Ductus venosus in the first trimester: contribution to screening of chromosomal, cardiac defects and monochorionic twin complications. Fetal Diagn. Ther. 2010; 28(2): 65-71.https://dx.doi.org/10.1159/000314036.
  50. Stagnati V., Zanardini C., Fichera A., Pagani G., Quintero R.A., Bellocco R., Prefumo F. Early prediction of twin-to-twin transfusion syndrome: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017; 49(5): 573-82. https://dx.doi.org/10.1002/uog.15989.
  51. Mastrodima S., Akolekar R., Yerlikaya G., Tzelepis T., Nicolaides K.H. Prediction of stillbirth from biochemical and biophysical markers at 11-13 weeks. Ultrasound Obstet. Gynecol. 2016; 48(5): 613-7. https://dx.doi.org/10.1002/uog.17289.
  52. Chhikara U., Anand K., Sharma A., Prasad S., Kaul A. Performance of ductus venosus Doppler (at 11-13 + 6 Weeks) in predicting adverse fetal outcomes in Indian population: Going Beyond Aneuploidies: Going Beyond Aneuploidies. J. Ultrasound Med. 2022; 41(11): 2877-83. https://dx.doi.org/10.1002/jum.15976.
  53. Bilardo C.M., Hecher K., Visser G.H.A., Papageorghiou A.T., Marlow N., Thilaganathan B. et al.; TRUFFLE Group. Severe fetal growth restriction at 26-32 weeks: key messages from the TRUFFLE study. Ultrasound Obstet. Gynecol. 2017; 50(3): 285-90. https://dx.doi.org/10.1002/uog.18815.
  54. Visser G.H.A, Bilardo C.M., Derks J.B., Ferrazzi E., Fratelli N., Frusca T. et al.; TRUFFLE group investigators. Fetal monitoring indications for delivery and 2-year outcome in 310 infants with fetal growth restriction delivered before 32 weeks' gestation in the TRUFFLE study. Ultrasound Obstet. Gynecol. 2017; 50(3): 347-52. https://dx.doi.org/10.1002/uog.17361.
  55. Lees C.C., Stampalija T., Baschat A., da Silva Costa F., Ferrazzi E., Figueras F. et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020; 56(2): 298-312.
  56. Melamed N., Baschat A., Yinon Y., Athanasiadis A., Mecacci F., Figueras F. et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021;152(Suppl. 1): 3.
  57. Ярыгина Т.А., Гус А.И. Задержка (замедление) роста плода: все, что необходимо знать практикующему врачу. Акушерство и гинекология. 2020; 12: 14-24. [Yarygina T.A., Gus A.I. Fetal growth restriction (retardation): everything the practitioner should know. Obstetrics and Gynecology. 2020; (12): 14-24. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.12.14-24.
  58. Министерство здравоохранения Российской Федерации. Клинические рекомендации «Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода)». M.; 2022. 73с. [Ministry of Health of the Russian Federation. Clinical guidelines "Insufficient fetal growth requiring the provision of medical care to the mother (fetal growth retardation)". Moscow; 2022. 73p.(in Russian)].
  59. Министерство здравоохранения Российской Федерации. Многоплодная беременность. Клинические рекомендации. М.; 2021. 74c. [Ministry of Health of the Russian Federation. Multiple pregnancy. Clinical guidelines. Moscow; 2021. 74p. (in Rusian)].
  60. Костюков К.В., Сакало В.А., Гладкова К.А., Бокерия Е.Л. Состояние сердечно-сосудистой системы плода и новорожденного при фето-фетальном трансфузионном синдроме. Акушерство и гинекология. 2020; 9: 82-7. [Kostyukov K.V., Sakalo V.A., Gladkova K.A., Bokeriya E.L. Newborn and fetal cardiovascular system in twin-to-twin transfusion syndrome. Obstetrics and Gynecology. 2020; (9): 82-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.9.82-87.
  61. Кадырбердиева Ф.З., Сыркашев Е.М., Костюков К.В., Шмаков Р.Г. Крестцово-копчиковая тератома у плода: новое о старой проблеме. Акушерство и гинекология. 2023; 2: 12-7. [Kadyrberdieva F.Z., Syrkashev E.M., Kostyukov K.V., Shmakov R.G. Fetal sacrococcygeal teratoma: new about an old problem. Obstetrics and Gynecology. 2023; (2): 12-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.267.
  62. Giorgi L., Durand P., Morin L., Miatello J., Merchaoui Z., Lambert V. et al. Management and outcomes of neonatal arteriovenous brain malformations with cardiac failure: A 17 Years' experience in a tertiary referral center. J. Pediatr. 2020; 218: 85-91.e2. https://dx.doi.org/10.1016/j.jpeds.2019.10.090.
  63. Paudice M., Peñuela L.A., Torielli F., Spina B., Remorgida V., Buffelli F. et al. Giant hepatic hemangioma and placental chorangiosis: A unique case of stillbirth? Fetal Pediatr. Pathol. 2019; 38(2): 175-81. https://dx.doi.org/10.1080/15513815.2018.1564159.
  64. Ziemann M., Apostolidou S., Dum D., Hecher K., Singer D., Tavares de Sousa M. Chorioangiom der Plazenta – eine seltene Ursache fetaler High-Output-Herzinsuffizienz [Chorangioma of the Placenta - A Rare Placental Cause of Fetal High Output Cardiac Failure]. Z. Geburtshilfe Neonatol. 2020; 224(2): 103-6. (in German). https://dx.doi.org/10.1055/a-0903-3034.
  65. Lund A., Ebbing C., Rasmussen S., Kiserud T., Kessler J. Maternal diabetes alters the development of ductus venosus shunting in the fetus. Acta Obstet. Gynecol. Scand. 2018; 97(8): 1032-40. https://dx.doi.org/10.1111/aogs.13363.
  66. Wong S.F., Petersen S.G., Idris N., Thomae M., McIntyre H.D. Ductus venosus velocimetry in monitoring pregnancy in women with pregestational diabetes mellitus. Ultrasound Obstet. Gynecol. 2010; 36(3): 350-4.https://dx.doi.org/10.1002/uog.7744.
  67. Ермакова Л.Б., Чечнева М.А., Лысенко С.Н., Петрухин В.А., Бурумкулова Ф.Ф. Состояние кровообращения у плодов при сахарном диабете матери. Российский вестник акушера-гинеколога. 2016; 16(3): 16‑22. [Ermakova L.B., Chechneva M.A., Lysenko S.N., Petrukhin V.A., Burumkulova F.F. The state of blood circulation in fetuses with maternal diabetes mellitus. Russian Bulletin of an Obstetrician-Gynecologist. 2016; 16(3): 16‑22. (in Russian)]. https://dx.doi.org/10.17116/rosakush201616316-22.
  68. Huhta J.C. Fetal congestive heart failure. Semin. Fetal Neonatal Med. 2005; 10(6): 542-52. https://dx.doi.org/10.1016/j.siny.2005.08.005.
  69. Леонова Е.И., Гасанова Р.М., Марзоева О.В., Ярыгина Т.А., Сыпченко Е.В. Сердечная недостаточность у плода: оценка риска перинатальной гибели. Бюллетень НЦССХ им. А.Н. Бакулева РАМН. Сердечно-сосудистые заболевания. 2021; 22(Suppl. 3): 9. [Leonova E.I., Gasanova R.M., Marzoeva O.V., Yarygina T.A., Sypchenko E.V. Fetal heart failure: assessment of the risk of perinatal death. Bulletin of the Bakulev National Center for Cardiovascular Surgery RAMS. Cardiovascular Diseases. 2021; 22(Suppl. 3): 9.(in Russian)].
  70. Berg C., Kremer C., Geipel A., Kohl T., Germer U., Gembruch U. Ductus venosus blood flow alterations in fetuses with obstructive lesions of the right heart. Ultrasound Obstet. Gynecol. 2006; 28(2): 137-42. https://dx.doi.org/10.1002/uog.2810.
  71. Kondo M., Itoh S., Kunikata T., Kusaka T., Ozaki T., Isobe K., Onishi S. Time of closure of ductus venosus in term and preterm neonates. Arch. Dis. Child Fetal Neonatal Ed. 2001; 85(1): F57-9. https://dx.doi.org/10.1136/fn.85.1.f57.
  72. Fugelseth D., Lindemann R., Liestøl K., Kiserud T., Langslet A. Postnatal closure of ductus venosus in preterm infants < or = 32 weeks. An ultrasonographic study. Early Hum. Dev. 1998; 53(2): 163-9. https://dx.doi.org/10.1016/s0378-3782(98)00051-6.
  73. Franchi-Abella S., Branchereau S., Lambert V., Fabre M., Steimberg C., Losay J. et al. Complications of congenital portosystemic shunts in children: therapeutic options and outcomes. J. Pediatr. Gastroenterol. Nutr. 2010; 51(3): 322-30. https://dx.doi.org/10.1097/MPG.0b013e3181d9cb92.
  74. Xiang Y., Jin K., Cai Q., Peng Y., Gan Q. Clinical findings, diagnosis and therapy of patent ductus venosus in children: a case series. Cardiovasc. Diagn. Ther. 2022; 12(5): 671-80. https://dx.doi.org/10.21037/cdt-22-179.
  75. Poeppelman R.S., Tobias J.D. Patent ductus venosus and congenital heart disease: a case report and review. Cardiol. Res. 2018; 9(5): 330-3.https://dx.doi.org/10.14740/cr777w.

Received 22.05.2023

Accepted 04.09.2023

About the Authors

Tamara A. Yarygina, PhD, specialist of ultrasound diagnostics, researcher, Perinatal Cardiology Center, A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, 121552, Russia, Moscow, Roublyevskoe Shosse, 135; Associated Professor at the Department of Ultrasound Diagnostics of the Faculty of Continuing Medical Education of the Medical Institute, Patrice Lumumba Peoples' Friendship University of Russia, 127015, Russia, Moscow, Pistsovaya str., 10, +7(495)414-78-75,
tamarayarygina@gmail.com, https://orcid.org/0000-0001-6140-1930
Rena M. Gasanova, Dr. Med. Sci., Head of the Perinatal Cardiology Center, A.N. Bakulev National Medical Research Center for Cardiovascular Surgery, 121552, Russia, Moscow, Rublevskoe shosse, 135; physician of ultrasound diagnostics at the Department of Ultrasound and Functional Diagnostics, Academician V.I. National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Academician Oparin str., 4, rmgasanova@bakulev.ru,
https://orcid.org/0000-0003-3318-1074
Olga V. Marzoeva, PhD, doctor of ultrasound diagnostics, Researcher, Perinatal Cardiology Center, A.N. Bakulev National Medical Research Center for Cardiovascular Surgery, 121552, Russia, Moscow, Rublevskoe shosse, 135, +7(495)414-78-75, ovmarzoeva@bakulev.ru, https://orcid.org/0000-0003-4475-0105
Elena V. Sypchenko, PhD, doctor of ultrasound diagnostics, Perinatal Cardiology Center, A.N. Bakulev National Medical Research Center for Cardiovascular Surgery,
121552, Russia, Moscow, Rublevskoe shosse, 135, +7(495)414-78-75, evsypchenko@bakulev.ru, https://orcid.org/0000-0002-8809-7913
Alexander I. Gus, Dr. Med. Sci., Professor, Chief Researcher at the Department of Ultrasound and Functional Diagnostics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Academician Oparin str., 4; Head of the Department of Ultrasound Diagnostics of the Faculty of Continuing Medical Education of the Medical Institute, Patrice Lumumba Peoples' Friendship University of Russia, 127015, Russia, Moscow, Pistsovaya str., 10, a_gus@oparina4.ru, https://orcid.org//0000-0003-1377-3128
Corresponding author: Tamara A. Yarygina, tayarygina@bakulev.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.