ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

Extracellular vesicles in follicular fluid: clinical aspects and molecular biology

Dovgan A.A., Akhmedova Z.F., Sysoeva A.P., Zingerenko B.V., Romanov E.A., Silachev D.N., Makarova N.P., Kalinina E.A.

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
Recently, extracellular vesicles (EVs), membrane vesicles secreted into the extracellular medium by various cell types of reproductive tissues, have been discovered in human follicular fluid (FF). It was originally thought that EV secretion might be a mechanism used by cells to eliminate intracellular 'debris', but subsequent studies have shown that EVs are used to deliver specific molecular information encapsulated in a double-layered lipid membrane from the donor cell to the recipient cell. EVs contain bioactive molecules, such as mRNA, microRNA, proteins, and lipids, that enable communication and interaction between different cells and tissues, including between the oocyte and somatic cells of the growing follicle. EVs in follicular fluid play an important role in the biological processes of folliculogenesis, oogenesis, and early embryogenesis.
Conclusion: The reviewed studies provide an opportunity to increase our understanding of the complex mechanisms of reproductive biology and improve the potential for the use of EVs to optimize the embryological stage of in vitro oocyte and embryo culture in assisted reproductive technology programs.

Authors' contributions: Dovgan A.A., Akhmedova Z.F., Sysoeva A.P., Zingerenko B.V., Romanov E.A., Silachev D.N., Makarova N.P., Kalinina E.A. – concept of article, search and review of relevant literature, manuscript drafting, and editing.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: This study was funded by state task #12101040600410-7 of the Ministry of Health of the Russian Federation "Addressing infertility in modern conditions by developing a clinical and diagnostic model for infertile couples and using innovative technologies in assisted reproductive programs".
For citation: Dovgan A.A., Akhmedova Z.F., Sysoeva A.P., Zingerenko B.V.,
Romanov E.A., Silachev D.N., Makarova N.P., Kalinina E.A. Extracellular vesicles
in follicular fluid: clinical aspects and molecular biology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (6): 38-43 (in Russian)
https://dx.doi.org/10.18565/aig.2022.320

Keywords

follicular fluid
extracellular vesicles
exosomes
microvesicles
microRNA
intercellular communication
assisted reproductive technology (ART)

Зрелый фолликул млекопитающего состоит из ооцита, окруженного клетками кумулюса, антральной полости, содержащей фолликулярную жидкость (ФЖ), гранулезных клеток, базальной мембраны и клеток теки. ФЖ продуцируется клетками гранулезы и кровеносными сосудами, окружающими клетки теки. Осмотический градиент, возникающий за счет гиалуроновой кислоты и хондроитинсульфата, образованных гранулезными клетками, путем транссудации создает приток жидкости из сосудов теки, увеличивая объемы ФЖ в процессе роста фолликула [1, 2]. В состав ФЖ входят различные белки, липиды, полисахариды, факторы роста, нуклеиновые кислоты, стероидные гормоны, активные формы кислорода и антиоксидантные ферменты [3–5]. Учитывая широкий спектр активных молекул и веществ, содержащихся в ФЖ, можно заключить, что ФЖ играет важную роль в регуляции фолликулогенеза, обеспечивая защиту, питание и созревание ооцита [6–8]. Таким образом, изучение молекулярного и биохимического состава ФЖ необходимо для более точного понимания процессов оогенеза и эмбриогенеза.

Классификация внеклеточных везикул

Не так давно в составе ФЖ были обнаружены внеклеточные везикулы (ВВ), представляющие собой мембранные пузырьки, продуцируемые различными типами клеток во внеклеточную среду [9, 10]. ВВ содержат биоактивные молекулы, такие как мРНК, микроРНК, белки и липиды, обеспечивающие коммуникацию и взаимодействие между различными клетками и тканями, в том числе между ооцитом и соматическими клетками растущего фолликула [11, 12]. Механизм связи между клеткой, продуцирующей ВВ (клеткой-донором), и клеткой, получающей информацию из ВВ (клеткой-реципиентом), включает: 1) взаимодействие между мембранными белками, активирующими внутриклеточную передачу сигналов внутри клеток-реципиентов; 2) расщепление мембранных белков ВВ вблизи рецепторов клеток-реципиентов; 3) молекулярный перенос содержимого ВВ путем слияния с клеткой-реципиентом и 4) фагоцитоз ВВ клетками-реципиентами [13, 14]. Высвобождение ВВ во внеклеточную среду происходит в ответ на специфические стимулы, которые могут возникать как в физиологических условиях, отражая нормальную функциональную активность клеток, так и в ответ на патологические сигналы [13, 15, 16].

Классификация ВВ осуществляется в соответствии с различными биологическими и морфологическими критериями, такими как клеточное происхождение, физические параметры (размер, плотность), биохимические характеристики (биологические маркеры мембраны), биологическая функция и биогенетические пути образования. Наиболее часто используется классификация ВВ в зависимости от механизма биосинтеза и высвобождения, где выделяют три основных подтипа ВВ: 1) экзосомы, 2) микровезикулы и 3) апоптотические тельца [9].

Экзосомы являются наиболее изученными и представляют собой небольшие ВВ диаметром от 30 до 150 нм [9]. Биосинтез экзосом включает образование мультивезикулярных тел (МВТ) из ранних эндосом, после чего происходит слияние МВТ с плазматической мембраной клетки-донора и высвобождение экзосом во внеклеточную среду путем экзоцитоза [17, 18]. Экзосомы, как правило, характеризуются экспрессией поверхностных маркеров, таких как CD9, CD63, CD81, Alix, TSG101 и флотиллин [14]. Дальнейшая судьба экзосомы зависит от липидного состава мембраны эндосомы: при наличии в мембране лизобисфосфатидиловой кислоты (фосфатидилинозитол-3-фосфата) и убиквитинированных белков происходит слияние с лизосомами и утилизация ее содержимого. Присутствие в мембране эндосомы церамидов приводит к слиянию эндосомы с поверхностной мембраной клетки и экскреции во внеклеточную среду в виде множества экзосом [19].

Микровезикулы, или эктосомы, представляют собой большие ВВ диаметром от 100 до 1000 нм, образующиеся путем выпячивания плазматической мембраны и последующего отделения образовавшихся ВВ [15, 16]. К поверхностным маркерным белкам, характерным для микровезикул, относят TSG101, ARRDC1, желатиназу, фактор рибозилирования АДФ 6, главный комплекс гистосовместимости 1, β1-интегрин, ассоциированный с везикулами мембранный белок 3 и матриксную металлопротеиназу мембранного типа 1 [20].

Апоптотические тельца характеризуются гетерогенным содержимым в виде органелл и ядерных фрагментов, имеют наибольший из подтипов ВВ размер от 1 до 5 мкм и образуются в результате апоптотических процессов, приводящих к запрограммированной гибели клеток [21]. Апоптотические антитела обычно характеризуются цитоскелетными и мембранными изменениями, включая транслокацию фосфатидилсерина из внутреннего слоя двухслойной липидной мембраны во внешний [22].

Учитывая существующие трудности в выделении и дифференцировке ВВ, в 2018 г. была предложена возможность классифицировать все ВВ в зависимости от 1) размера: маленькие ВВ от 100 до 200 нм; большие и/или средние ВВ >200 нм; 2) биохимического состава: экспрессия CD63+/CD81+ – окрашивание аннексином А5 и т.д.; 3) описания состояний или продуцирующих клеток: подоцитарные ВВ, гипоксические ВВ, большие онкосомы, апоптотические тельца [23].

Стандартными методами выделения ВВ являются: ультрацентрифугирование, фильтрация, полимерное осаждение, иммуноаффинные и микрофлюидные методы [24]. Анализ выделенных ВВ может быть количественным и качественным. С использованием электронной и атомно-силовой микроскопии, оптического отслеживания частиц, проточной цитометрии и вестерн-блоттинга представляется возможной оценка морфологии, размера, концентрации, чистоты и содержания белка в составе ВВ [24]. Криотрансмиссионная электронная микроскопия позволяет изучить точную морфологию субпопуляций ВВ различного размера. Данная методика позволила Neyroud A.S. et al. выделить множество морфологических подтипов ВВ в зависимости от их формы: одиночные, овальные, двойные, двойные специальные везикулы, маленькие и большие трубочки, плейоморфные мембраны и др. [25].

Источники внеклеточных везикул

Изначально предполагалось, что секреция ВВ может представлять собой механизм, используемый клетками для экскреции внутриклеточного «мусора» [26], однако последующие исследования установили, что посредством ВВ происходит целенаправленная доставка специфической молекулярной информации, заключенной в двухслойную липидную мембрану, от клетки-донора к клетке-реципиенту [27].

В настоящее время активно ведутся исследования по оценке ВВ в различных биологических средах организма, в том числе в органах и тканях репродуктивной системы; поскольку было установлено, что межклеточное взаимодействие, опосредованное ВВ, имеет важное значение в регуляции различных физиологических процессов, включая клеточную пролиферацию и дифференцировку, гаметогенез, оплодотворение, имплантацию и раннее эмбриональное развитие [28–31].

Секреция ВВ была описана в фолликулярных клетках [30], клетках яйцевода [29, 32], эмбрионах, полученных путем культивирования in vitro [33], клетках эндометрия [34], амниотической жидкости [35] и сперме [36].

Внеклеточные везикулы фолликулярной жидкости и их роль в репродуктивной медицине

Двусторонняя межклеточная коммуникация между ооцитом и соседними соматическими клетками фолликула может быть опосредована напрямую через щелевые контакты плазматической мембраны соседней клетки, а также путем секреции во внеклеточное пространство растворимых факторов (гормонов, цитокинов, факторов роста, ферментов и т.д.) [37]. Перечисленные биологически активные молекулы могут воздействовать на саму клетку путем аутокринной передачи сигналов, паракринной передачи сигналов на соседние клетки и эндокринной передачи сигналов на отдаленные клетки [13]. Однако с открытием транспорта, опосредованного ВВ, научный мир познакомился с новым механизмом межклеточной коммуникации и взаимодействия, который обеспечивает обмен крупными молекулами, такими как нуклеиновые кислоты, белки и липиды, и может играть ключевую роль во многих жизненно важных процессах.

Впервые микровезикулы и экзосомы, в составе которых идентифицировалась микроРНК, были обнаружены в ФЖ лошади. Было установлено, что кумулюсные и гранулезные клетки способны связывать и захватывать ВВ, предполагая новый межклеточный механизм коммуникации между ооцитом и соматическими клетками фолликулов. Особый интерес представляет тот факт, что состав микроРНК может варьировать в зависимости от возраста изучаемой особи, что позволяет предположить, роль микроРНК экзосом ФЖ в качестве возможного предиктора возрастного снижения качества ооцитов [30]. Аналогичные данные изменения состава микроРНК ВВ в зависимости от возраста были получены при исследовании ФЖ женщин [38]. Наличие ВВ и микроРНК в ФЖ человека впервые было идентифицировано в 2013 г. методом электронной микроскопии [39]; позже экзосомы из ФЖ человека были выделены с помощью ультрацентрифугирования, анализа слежения за наночастицами и проточной цитометрии. В 2014 г. в составе экзосом ФЖ женщин были обнаружены экзосомальные микроРНК, и с помощью биоинформатического анализа обнаружена их способность регуляции развития фолликулов, возобновления в ооцитах мейоза и последующей овуляции [40]. По результатам исследования Sohel M.M.H. et al., поглощение экзосом фолликулярными клетками инициирует повышение уровней микроРНК в этих клетках; при этом большинство микроРНК ФЖ приходится именно на экзосомальную фракцию, когда свободные микроРНК находятся в меньшинстве. Более того, некоторые микроРНК в составе экзосом могут способствовать росту ооцитов, поскольку они по-разному экспрессировались в фолликулах, содержащих ооциты на разных стадиях созревания [41, 42]. При исследовании различий в профилях микроРНК ФЖ женщин фертильного возраста и пациенток с синдромом поликистозных яичников (СПКЯ) было показано, что концентрация ВВ была выше в ФЖ пациенток с СПКЯ, что может предполагать возможные нарушения в межклеточной коммуникации у пациенток данной группы [43]. Концентрация внеклеточных везикул ФЖ и содержание в них микроРНК может изменяться в зависимости от размера фолликула [44]. Оценка ФЖ крупного рогатого скота позволила установить, что ВВ мелких (3–5 мм в диаметре) и крупных фолликулов (>9 мм в диаметре) вызывают расширение кумулюса во время созревания ооцита in vitro [45], а также стимулируют пролиферацию клеток гранулезы [46]. При этом больший эффект наблюдается в отношении ВВ, выделенных из небольших фолликулов. Описанные изменения могут быть связаны с участием ВВ ФЖ в регуляции сигнального пути трансформирующего фактора роста бета, играющего важную роль в фолликуло- и оогенезе [47]. Добавление ВВ из ФЖ небольших фолликулов в среду культивирования приводило к увеличению количества бластоцист, изменениям в транскрипции генов эмбрионов, а также изменениям уровней метилирования ДНК [48]. В исследовании Sysoeva A.P. et al. было продемонстрировано, что при инкубации сперматозоидов с экзосомами ФЖ улучшаются показатели подвижности и гиперактивация сперматозоидов, что может быть связано с переносом микроРНК, белков и других важных биологически активных молекул [49]. Также было установлено, что экзосомы ФЖ обладают цитопротекторным действием. Обработка ооцитов экзосомами, полученными из ФЖ, снижала апоптоз клеток кумулюса и повреждение ооцитов, вызванное тепловым шоком [50].

В исследовании Milyutina Yu.P. et al. описаны механизмы регуляции апоптотических процессов в клетках трофобласта посредством ВВ, продуцируемых натуральными киллерами [51]. Недавнее исследование, проведенное на ФЖ свиньи, показало, что экзосомы, выделенные из ФЖ, повышают жизнеспособность и изменяют профиль экспресcии генов клеток гранулезы, увеличивая экспрессию генов, ответственных за пролиферацию и секрецию прогестерона через сигнальный путь WNT/B-CATENIN [52].

Заключение

Таким образом, становится очевидно, что ВВ ФЖ имеют важное значение, связанное с биологическими процессами фолликулогенеза, оогенеза и раннего эмбриогенеза. Представленные исследования позволяют расширить понимание сложных механизмов репродуктивной биологии, а также улучшить возможности использования ВВ для оптимизации эмбриологического этапа культивирования ооцитов и эмбрионов in vitro в программах вспомогательных репродуктивных технологий.

References

  1. Rodgers R.J., Irving-Rodgers H.F. Formation of the ovarian follicular antrum and follicular fluid. Biol. Reprod. 2010; 82(6): 1021-9. https://dx.doi.org/10.1095/biolreprod.109.082941.
  2. Hennet M.L., Combelles C.M.H. The antral follicle: a microenvironment for oocyte differentiation. Int. J. Dev. Biol. 2012; 56(10-12): 819-31.https://dx.doi.org/10.1387/ijdb.120133cc.
  3. Фортыгина Ю.А., Макарова Н.П., Непша О.С., Лобанова Н.Н., Калинина Е.А. Роль липидомных исследований в репродукции человека и исходах программ лечения бесплодия методами вспомогательных репродуктивных технологий. Акушерство и гинекология. 2022; 10: 14-20. [Fortygina Yu.A., Makarova N.P., Nepsha O.S., Lobanova N.N., Kalinina E.A. The role of lipidomic studies in human reproduction and in the outcomes of infertility treatment programs using assisted reproductive technologies. Obstetrics and Gynecology. 2022; (10): 14-20. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.10.14-20.
  4. Гапоненко А.А., Митюрина Е.В., Франкевич В.Е. Метаболомный профиль фолликулярной жидкости как маркер качества ооцитов в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021; 11: 26-31. [Gaponenko A.A., Mityurina E.V., Frankevich V.E. The follicular fluid metabolomic profile as a marker for oocyte quality in assisted reproductive technology programs. Obstetrics and Gynecology. 2021; (11): 26-31. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.11.26-31.
  5. Шамина М.А., Тимофеева А.В., Федоров И.С., Калинина Е.А. Оценка уровня экспрессии пивиРНК hsa_piR_020497 в фолликулярной жидкости пациенток с различными исходами программ экстракорпорального оплодотворения. Акушерство и гинекология. 2021; 11: 143-53. [Shamina M.A., Timofeeva A.V., Fedorov I.S., Kalinina E.A. Assessment of the expression level of hsa_pir_020497 piRNA in the follicular fluid of patients with different in vitro fertilization outcomes. Obstetrics and Gynecology. 2021; (11): 143-53.(in Russian)]. https://dx.doi.org/10.18565/aig.2021.11.143-153.
  6. Zamah A.M., Hassis M.E., Albertolle M.E., Williams K.E. Proteomic analysis of human follicular fluid from fertile women. Clin. Proteomics. 2015; 12(1): 5. https://dx.doi.org/10.1186/s12014-015-9077-6.
  7. Andersen M.M., Kroll J., Byskov A.G., Faber M. Protein composition in the fluid of individual bovine follicles. Reproduction. 1976; 48(1): 109-18. https://dx.doi.org/10.1530/jrf.0.0480109.
  8. Ambekar A.S., Nirujogi R.S., Srikanth S.M., Chavan S., Kelkar D.S.,Hinduja I. et al. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. J. Proteomics. 2013; 87: 68-77.https://dx.doi.org/10.1016/j.jprot.2013.05.017.
  9. György B., Szabó T.G., Pásztói M., Pál Z., Misják P., Aradi B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011; 68(16): 2667-88. https://dx.doi.org/10.1007/s00018-011-0689-3.
  10. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013; 200(4): 373-83. https://dx.doi.org/10.1083/jcb.201211138.
  11. Simpson R.J., Jensen S.S., Lim J.W.E. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008; 8(19): 4083-99. https://dx.doi.org/10.1002/pmic.200800109.
  12. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007; 9(6): 654-9.https://dx.doi.org/10.1038/ncb1596.
  13. EL Andaloussi S., Mäger I., Breakefield X.O., Wood M.J.A. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013; 12(5): 347-57. https://dx.doi.org/10.1038/nrd3978.
  14. Mathivanan S., Ji H., Simpson R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics. 2010; 73(10): 1907-20.https://dx.doi.org/10.1016/j.jprot.2010.06.006.
  15. Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009; 19(2): 43-51. https://dx.doi.org/10.1016/j.tcb.2008.11.003.
  16. Tannetta D., Dragovic R., Alyahyaei Z., Southcombe J. Extracellular vesicles and reproduction–promotion of successful pregnancy. Cell Mol. Immunol. 2014; 11(6): 548-63. https://dx.doi.org/10.1038/cmi.2014.42.
  17. Théry C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2002; 2(8): 569-79. https://dx.doi.org/10.1038/nri855.
  18. Théry C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009; 9(8): 581-93. https://dx.doi.org/10.1038/nri2567.
  19. Maas S.L.N., Breakefield X.O., Weaver A.M. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017; 27(3): 172-88.https://dx.doi.org/10.1016/j.tcb.2016.11.003.
  20. Tesfaye D., Hailay T., Salilew-Wondim D., Hoelker M., Bitseha S., Gebremedhn S. Extracellular vesicle mediated molecular signaling in ovarian follicle: Implication for oocyte developmental competence. Theriogenology. 2020; 150: 70-4. https://dx.doi.org/10.1016/j.theriogenology.2020.01.075.
  21. Pavani K.C., Alminana C., Wydooghe E., Catteeuw M., Ramírez M.A., Mermillod P. et al. Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reprod. Fertil. Dev. 2017; 29(1): 66.https://dx.doi.org/10.1071/RD16318.
  22. van Engeland M., Kuijpers H.J.H., Ramaekers F.C.S., Reutelingsperger C.P.M., Schutte B. Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp. Cell Res. 1997; 235(2): 421-30. https://dx.doi.org/10.1006/excr.1997.3738.
  23. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018; 7(1): 1535750. https://dx.doi.org/10.1080/20013078.2018.1535750.
  24. Witwer K.W., Buzás E.I., Bemis L.T., Bora A., Lässer C., Lötvall J. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles. 2013; 2(1): 20360.https://dx.doi.org/10.3402/jev.v2i0.20360.
  25. Neyroud A.S., Chiechio R.M., Moulin G., Ducarre S., Heichette C.,Dupont A. et al. Diversity of extracellular vesicles in human follicular fluid: morphological analysis and quantification. Int. J. Mol. Sci. 2022; 23(19): 11676. https://dx.doi.org/10.3390/ijms231911676.
  26. van der Pol E., Böing A.N., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012; 64(3): 676-705. https://dx.doi.org/10.1124/pr.112.005983.
  27. Liu Y.J., Wang C. A review of the regulatory mechanisms of extra cellular vesicles-mediated intercellular communication. Cell Commun. Signal. 2023; 21(1): 77. https://dx.doi.org/10.1186/s12964-023-01103-6.
  28. Ruiz-González I., Xu J., Wang X., Burghardt R.C., Dunlap K.A., Bazer F.W. Exosomes, endogenous retroviruses and toll-like receptors: pregnancy recognition in ewes. Reproduction. 2015; 149(3): 281-91.https://dx.doi.org/10.1530/REP-14-0538.
  29. Al-Dossary A.A., Strehler E.E., Martin-DeLeon P.A. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One. 2013; 8(11): e80181. https://dx.doi.org/10.1371/journal.pone.0080181.
  30. da Silveira J.C., Veeramachaneni D.N.R., Winger Q.A., Carnevale E.M., Bouma G.J. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol. Reprod. 2012; 86(3): 71. https://dx.doi.org/10.1095/biolreprod.111.093252.
  31. Machtinger R., Laurent L.C., Baccarelli A.A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update. 2015; dmv055. https://dx.doi.org/10.1093/humupd/dmv055.
  32. Lopera-Vásquez R., Hamdi M., Fernandez-Fuertes B., Maillo V., Beltrán-Breña P., Calle A. et al. Extracellular vesicles from BOEC in In Vitro embryo development and quality. PLoS One. 2016; 11(2): e0148083. https://dx.doi.org/10.1371/journal.pone.0148083.
  33. Mellisho E.A., Velásquez A.E., Nuñez M.J., Cabezas J.G., Cueto J.A., Fader C. et al. Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS One. 2017; 12(5): e0178306.https://dx.doi.org/10.1371/journal.pone.0178306.
  34. Ng Y.H., Rome S., Jalabert A., Forterre A., Singh H., Hincks C.L., Salamonsen L.A. Endometrial exosomes microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS One. 2013; 8(3): e58502. https://dx.doi.org/10.1371/journal.pone.0058502.
  35. Asea A., Jean-Pierre C., Kaur P., Rao P., Linhares I.M., Skupski D., Witkin S.S. Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J. Reprod. Immunol. 2008; 79(1): 12-7. https://dx.doi.org/10.1016/j.jri.2008.06.001.
  36. Aalberts M., van Dissel-Emiliani F.M., van Adrichem N.P., van Wijnen M., Wauben M.H., Stout T.A., Stoorvogel W. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin A1, and GLIPR2 in humans. Biol. Reprod. 2012; 86(3): 82.https://dx.doi.org/10.1095/biolreprod.111.095760.
  37. Andronico F., Battaglia R., Ragusa M., Barbagallo D., Purrello M., di Pietro C. Extracellular vesicles in human oogenesis and implantation. Int. J. Mol. Sci. 2019; 20(9): 2162. https://dx.doi.org/10.3390/ijms20092162.
  38. Diez-Fraile A., Lammens T., Tilleman K., Witkowski W., Verhasselt B., De Sutter P. et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum. Fertil. 2014; 17(2): 90-8. https://dx.doi.org/10.3109/14647273.2014.897006.
  39. Sang Q., Yao Z., Wang H., Feng R., Wang H., Zhao X. et al. Identification of MicroRNAs in human follicular fluid: characterization of MicroRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 2013; 98(7): 3068-79.https://dx.doi.org/10.1210/jc.2013-1715.
  40. Santonocito M., Vento M., Guglielmino M.R., Battaglia R., Wahlgren J., Ragusa M. et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil. Steril. 2014; 102(6): 1751-61.e1. https://dx.doi.org/10.1016/j.fertnstert.2014.08.005.
  41. Sohel M.M.H., Hoelker M., Noferesti S.S., Salilew-Wondim D., Tholen E., Looft C. et al. Exosomal and non-exosomal transport of extra-C+cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013; 8(11): e78505. https://dx.doi.org/10.1371/journal.pone.0078505.
  42. Sohel M.M.H., Hoelker M., Schellander K., Tesfaye D. The extent of the abundance of exosomal and non‐exosomal extracellular miRNAs in the bovine follicular fluid. Reprod. Domest. Anim. 2022; 57(10): 1208-17.https://dx.doi.org/10.1111/rda.14195.
  43. Rooda I., Hasan M.M., Roos K., Viil J., Andronowska A., Smolander O.P. et al. Cellular, extracellular and extracellular vesicular miRNA profiles of Pre-ovulatory follicles indicate signaling disturbances in polycystic ovaries. Int. J. Mol. Sci. 2020; 21(24): 9550. https://dx.doi.org/10.3390/ijms21249550.
  44. Navakanitworakul R., Hung W.-T., Gunewardena S., Davis J.S., Chotigeat W., Christenson L.K. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci. Rep. 2016; 6(1): 25486. https://dx.doi.org/10.1038/srep25486.
  45. Hung W.T., Hong X., Christenson L.K., McGinnis L.K. Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol. Reprod. 2015; 93(5): 117. https://dx.doi.org/10.1095/biolreprod.115.132977.
  46. Hung W.T., Navakanitworakul R., Khan T., Zhang P., Davis J.S., McGinnis L.K., Christenson L.K. Stage-specific follicular extracellular vesicle uptake and regulation of bovine granulosa cell proliferation. Biol. Reprod. 2017; 97(4):644-55. https://dx.doi.org/10.1093/biolre/iox106.
  47. da Silveira J.C., Carnevale E.M., Winger Q.A., Bouma G.J. Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod. Biol. Endocrinol. 2014; 12(1): 44. https://dx.doi.org/10.1186/1477-7827-12-44.
  48. da Silveira J.C., Andrade G.M., Del Collado M., Sampaio R.V., Sangalli J.R., Silva L.A. et al. Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS One. 2017; 12(6): e0179451. https://dx.doi.org/10.1371/journal.pone.0179451.
  49. Sysoeva A.P., Makarova N.P., Silachev D.N., Lobanova N.N., Shevtsova Y.A., Bragina E.E. et al. Influence of extracellular vesicles of the follicular fluid on morphofunctional characteristics of human sperm. Bull. Exp. Biol. Med. 2021; 172(2): 254-62. https://dx.doi.org/10.1007/s10517-021-05372-4.
  50. Rodrigues T.A., Tuna K.M., Alli A.A., Tribulo P., Hansen P.J., Koh J., Paula-Lopes F.F. Follicular fluid exosomes act on the bovine oocyte to improve oocyte competence to support development and survival to heat shock. Reprod. Fertil. Dev. 2019; 31(5): 888. https://dx.doi.org/10.1071/RD18450.
  51. Milyutina Yu.P., Korenevskii A.V., Vasilyeva V.V., Bochkovskii S.K., Ishchenko A.M., Simbirtsev A.S. et al. Caspase activation in trophoblast cells after interacting with microparticles produced by natural killer cells in vitro. J. Evol. Biochem.Physiol. 2022; 58(6): 1834-46. https://dx.doi.org/10.1134/S002209302206014X.
  52. Yuan C., Li Z., Zhao Y., Wang X., Chen L., Zhao Z. et al. Follicular fluid exosomes: important modulator in proliferation and steroid synthesis of porcine granulosa cells. FASEB J. 2021; 35(5): e21610. https://dx.doi.org/10.1096/fj.202100030RR.

Received 30.12.2022

Accepted 27.03.2023

About the Authors

Alina A. Dovgan, MD, PhD, Researcher, Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, +7(929)910-46-00, lina.dovgan@gmail.com, https://orcid.org/0000-0002-4927-3590, 117997, Russia, Moscow, Ac. Oparin str., 4.
Zumriiat F. Akhmedova, Postgraduate Student, Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, +7(926)626-22-24, zyuka-1997@mail.ru, https://orcid.org/0000-0002-4483-8820, 117997, Russia, Moscow, Ac. Oparin str., 4.
Anastasia P. Sysoeva, Clinical Embryologist, Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, sysoeva.a.p@gmail.com, https://orcid.org/0000-0002-6502-4498,
117997, Russia, Moscow, Ac. Oparin str., 4.
Boris V. Zingerenko, Junior Researcher, Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, b_zingerenko@oparina4.ru, https://orcid.org/0000-0002-8784-5502,
117997, Russia, Moscow, Ac. Oparin str., 4.
Evgeniy A. Romanov, Clinical Embryologist, Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, e_romanov@oparina4.ru, 117997, Russia, Moscow, Ac. Oparin str., 4.
Denis N. Silachev, PhD, Chief of the Laboratory of Cellular Technologies, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, d_silachev@oparina4.ru, https://orcid.org/0000-0003-0581-9755, 117997, Russia, Moscow, Ac. Oparin str., 4.
Natalya P. Makarova, PhD, Leading Researcher, Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, np_makarova@oparina4.ru, https://orcid.org/0000-0003-8922-2878,
117997, Russia, Moscow, Ac. Oparin str., 4.
Elena A. Kalinina, Dr. Med. Sci., Professor, Head of the Department of Assistive Technologies in Infertility Treatment, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, e_kalinina@oparina4.ru, https://orcid.org/0000-0002-8922-2878,
117997, Russia, Moscow, Ac. Oparin str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.