Regulation of water and electrolyte homeostasis in preeclampsia

Khlestova G.V., Karapetyan A.O., Baev O.R.

1 Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia 2 Deparment of Obstetrics, Gynecology, Perinatology, and Reproductology, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
Objective. To analyze the data available in the literature on the regulation of water and electrolyte homeostasis in patients with preeclampsia.
Material and methods. The review includes the data of foreign and Russian articles published in the past 10 years and found in Pubmed.
Results. Major changes in water and electrolyte balance and the possible mechanisms that regulate ion homeostasis are described in patients with preeclampsia.
Conclusion. There is a need for further investigations of the pathophysiological mechanisms regulating water and electrolyte homeostasis in preeclampsia for the elaboration of new approaches to predicting and treating this pregnancy complication.

Keywords

preeclampsia
water and electrolyte homeostasis
vasopressin
copeptin
aquaporin 2

References

1. Yang J., Shang J., Zhang S., Li H., Liu H. The role of the renin-angiotensin-aldosterone system in preeclampsia: Genetic polymorphisms and microRNA. J. Mol. Endocrinol. 2013; 50(2): R53-66.

2. Evers K.S., Wellmann S. Arginine vasopressin and copeptin in perinatology. Front. Pediatr. 2016; 4: 75.

3. Sibai B., Dekker G., Kupferminc M. Pre-eclampsia. Lancet. 2005; 365(9461): 785-99.

4. Kuc S., Wortelboer E.J., van Rijn B.B., Franx A., Visser G.H.A., Schielen P.C.J.I. Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first-trimester prediction of preeclampsia: a systematic review. Obstet. Gynecol. Surv. 2011; 66(4): 225-39.

5. Pijnenborg R., Vercruysse L., Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006; 27(9-10): 939-58.

6. Hua Y., Jiang W., Zhang W., Shen Q., Chen M., Zhu X. Expression and significance of aquaporins during pregnancy. Front. Biosci. (Landmark Ed.). 2013; 18: 1373-83.

7. Tabassum H., Al-jameil N., Ali M.N., Khan F.A., Al-rashed M. Status of serum electrolytes in preeclamptic pregnant women of Riyadh, Saudi Arabia. Biomed. Res. 2015; 26(2): 219-24.

8. Razavi A.S., Chasen S.T., Gyawali R., Kalish R.B. Hyponatremia associated with preeclampsia. J. Perinat. Med. 2017; 45(4): 467-70.

9. Handwerker S.M., Altura B.T., Altura B.M. Ionized serum magnesium and potassium levels in pregnant women with preeclampsia and eclampsia. J. Reprod. Med. 1995; 40(3): 201-8.

10. Fong J., Khan A. Hypocalcemia: updates in diagnosis and management for primary care. Can. Fam. Physician. 2012; 58(2): 158-62.

11. Савельева Г., Шалина Р., Курцер М., Штабницкий А., Куртенок Н., Коновалова О. Эклампсия в современном акушерстве. Акушерство и гинекология. 2010; 6: 4-9. [Savelyeva G.M., Shalina R.I., Kurtser M.A., Shabnitsky A.M., Kurtenok N.V., Konovalova O.V. Eclampsia in modern obstetrics. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2010; (6): 4-9. (in Russian)]

12. Udenze I.C., Arikawe A.P., Azinge E.C., Okusanya B.O., Ebuehi O.A. Calcium and magnesium metabolism in pre-eclampsia. West. Afr. J. Med. 2014; 33(3):178-82.

13. Dayanithi G., Nordmann J.J. Chloride and magnesium dependence of vasopressin release from rat permeabilized neurohypophysial nerve endings. Neurosci. Lett. 1989; 106(3): 305-9.

14. Sibai B.M., Lipshitz J., Anderson G.D., Dilts P. V. Reassessment of intravenous MgSO4 therapy in preeclampsia-eclampsia. Obstet. Gynecol. 1981; 57(2): 199-202.

15. Tang R., Tang I.C., Henry A., Welsh A. Limited evidence for calcium supplementation in preeclampsia prevention: a meta-analysis and systematic review. Hypertens. Pregnancy. 2015; 34(2):181-203.

16. Jadli A., Sharma N., Damania K., Satoskar P., Bansal V., Ghosh K. et al. Promising prognostic markers of Preeclampsia: New avenues in waiting. Thromb. Res. 2015; 136(2): 189-95.

17. Sandgren J.A., Scroggins S.M., Santillan D.A., Devor E.J., Gibson-Corley K.N., Pierce G.L. et al. Vasopressin: the missing link for preeclampsia? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015; 309(9): R1062-4.

18. Dobsa L., Cullen Edozien K. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem. Med. (Zagreb). 2013; 23(2): 172-90.

19. Meyer B., Wexberg P., Struck J., Bergmann A., Morgenthaler N., Heinz G. et al. Copeptin is a strong and independent predictor of outcome in cardiogenic shock. Crit. Care. 2009; 13(Suppl. 1): P383.

20. Zulfikaroglu E., Islimye M., Tonguc E.A., Payasli A., Isman F., Var T. et al. Circulating levels of copeptin, a novel biomarker in pre-eclampsia. J. Obstet. Gynaecol. Res. 2011; 37(9): 1198-202.

21. Tuten A., Oncul M., Kucur M., Imamoglu M., Ekmekci O.B., Acıkgoz A.S. et al. Maternal serum copeptin concentrations in early- and late-onset pre-eclampsia. Taiwan. J. Obstet. Gynecol. 2015; 54(4): 350-4.

22. Wellmann S., Benzing J., Fleischlin S., Morgenthaler N., Fouzas S., Bührer C.A. et al. Cardiovascular biomarkers in preeclampsia at triage. Fetal Diagn. Ther. 2014; 36(3): 202-7.

23. Santillan M.K., Santillan D.A., Scroggins S.M., Min J.Y., Sandgren J.A., Pearson N.A. et al. Vasopressin in preeclampsia: A novel very early human pregnancy biomarker and clinically relevant mouse model. Hypertension. 2014; 64(4): 852-9.

24. Gonen T., Walz T. The structure of aquaporins. Q. Rev. Biophys. 2006; 39(4): 361-96.

25. Buemi M., D’Anna R., Di Pasquale G., Floccari F., Ruello A., Aloisi C. et al. Urinary excretion of aquaporin-2 water channel during pregnancy. Cell. Physiol. Biochem. 2001; 11(4): 203-8.

26. Abreu N., Tardin J.C.B.M., Boim M.A., Campos R.R., Bergamaschi C.T., Schor N. Hemodynamic parameters during normal and hypertensive pregnancy in rats: evaluation of renal salt and water transporters. Hypertens. Pregnancy. 2008; 27(1): 49-63.

27. Quick A.M., Cipolla M.J. Pregnancy-induced up-regulation of aquaporin-4 protein in brain and its role in eclampsia. FASEB J. 2005;19(2): 170-5.

28. Damiano A.E., Zotta E., Ibarra C. Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. Placenta. 27(11-12): 1073-81.

29. Yan W., Sheng N., Seto M., Morser J., Wu Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J. Biol. Chem. 1999; 274(21): 14926-35.

30. Hooper J.D., Scarman A.L., Clarke B.E., Normyle J.F., Antalis T.M. Localization of the mosaic transmembrane serine protease corin to heart myocytes. Eur. J. Biochem. 2000; 267(23): 6931-7.

31. Ichiki T., Huntley B.K., Heublein D.M., Sandberg S.M., McKie P.M., Martin F.L. et al. Corin is present in the normal human heart, kidney, and blood, with pro-B-type natriuretic peptide processing in the circulation. Clin. Chem. 2011; 57(1): 40-7.

32. Polzin D., Kaminski H.J., Kastner C., Wang W., Krämer S., Gambaryan S. et al. Decreased renal corin expression contributes to sodium retention in proteinuric kidney diseases. Kidney Int. 2010; 78(7): 650-9.

33. Chung S., Moon J.-I., Leung A., Aldrich D., Lukianov S., Kitayama Y. et al. ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proc. Natl. Acad. Sci. USA. 2011; 108(23): 9703-8.

34. Enshell-Seijffers D., Lindon C., Morgan B.A. The serine protease Corin is a novel modifier of the Agouti pathway. Development. 2008; 135(2): 217-25.

35. Wu Q., Xu-Cai Y.O., Chen S., Wang W. Corin: new insights into the natriuretic peptide system. Kidney Int. 2009; 75(2): 142-6.

36. Wu Q. The serine protease corin in cardiovascular biology and disease. Front. Biosci. 2007; 12: 4179–90.

37. Yan W., Wu F., Morser J., Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc. Natl. Acad. Sci. USA. 2000; 97(15): 8525-9.

38. Zhou Y., Wu Q. Role of corin and atrial natriuretic peptide in preeclampsia. Placenta. 2013; 34(2): 89-94.

39. Cui Y., Wang W., Dong N., Lou J., Srinivasan D.K., Cheng W. et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature. 2012; 484(7393): 246-50.

40. Chen S., Sen S., Young D., Wang W., Moravec C.S., Wu Q. Protease corin expression and activity in failing hearts. Am. J. Physiol. Heart Circ. Physiol. 2010; 299(5): H1687-92.

41. Tran K.L., Lu X., Lei M., Feng Q., Wu Q. Upregulation of corin gene expression in hypertrophic cardiomyocytes and failing myocardium. Am. J. Physiol. Heart Circ. Physiol. 2004; 287(4): H1625-31.

Received 15.02.2017

Accepted 17.02.2017

About the Authors

Khlestova Galina Vladimirovna, the postgraduate student, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79647838076. E-mail: g_khlestova@oparina4.ru
Karapetyan Anna Ovikovna, the postgraduate student, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79057068481. E-mail: anne-89@mail.ru
Baev Oleg Radomirovich, MD, Professor, Head of maternity department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381188. E-mail: o_baev@oparina4.ru

For citations: Khlestova G.V., Karapetyan A.O., Baev O.R. Regulation of water and electrolyte homeostasis in preeclampsia. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (11): 5-9. (in Russian)
https://dx.doi.org/10.18565/aig.2017.11.5-9

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.