ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

Placental programming of neuropsychiatric disorders. Postnatal neurological consequences of preeclampsia

Nikitina N.A., Sidorova I.S., Amiraslanova N.I., Ageev M.B., Gololobova M.N.

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russia

In recent years, there has been an increasing number of studies published in support of the concept of ‘fetal programming’ of adult diseases, such as type 2 diabetes, obesity, arterial hypertension, coronary heart disease and atherosclerosis. The precise pathophysiological mechanisms remain unclear; however, the placenta is considered to play a key role in this process. In this regard, a new field of research called neuroplacentology has emerged. This field focuses on the role of the placenta in the development of the fetal brain, as well as fetal-related neurological and psychiatric disorders.
This review analyses and presents publications investigating the mechanisms how the placenta may influence intrauterine neurogenesis. The article highlights preeclampsia, one of the severe complications of pregnancy, associated with a high risk of fetal brain development disorders, postnatal neurological diseases and psychopathology. The analysis of scientific publications, including experimental and clinical data was performed. The focus was on the association between neurobiological outcomes in offspring in case of preeclampsia and prenatal mechanisms of their development. The articles from the databases PubMed, Scopus and Web of Science from 2000 to 2024 were selected for the review.
Conclusion: Children born to mothers with preeclampsia have been shown to be at high risk of neurological disorders, psychopathology and cognitive disorders. The early neonatal period (the time when plasticity in the developing brain is preserved) may represent the most important opportunity for early screening and therapeutic intervention.

Authors’ contributions: Sidorova I.S., Nikitina N.A. – developing the concept and design of the study; Amiraslanova N.I., Ageev M.B., Gololobova M.N. – collecting and processing the material; Nikitina N.A. – writing the text; Sidorova I.S. – editing the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was carried out without sponsorship.
For citation: Nikitina N.A., Sidorova I.S., Amiraslanova N.I., Ageev M.B., Gololobova M.N. Placental programming of neuropsychiatric disorders. Postnatal neurological consequences of preeclampsia.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (5): 32-39 (in Russian)
https://dx.doi.org/10.18565/aig.2025.6 

Keywords

preeclampsia
neuroplacentology
neurotrophin

References

  1. Гуменюк Е.Г., Ившин А.А., Светова К.С. Задержка роста плода как предиктор здоровья на протяжении будущей жизни. Акушерство и гинекология. 2024; 3: 5-12. [Gumeniuk E.G., Ivshin A.A., Svetova K.S. Fetal growth retardation as a predictor of health during the future life. Obstetrics and Gynecology. 2024; (3): 5-12 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.277
  2. Barker D.J., Osmond C., Simmonds S.J., Wield G.A. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993; 306(6875): 422-6. https://dx.doi.org/10.1136/bmj.306.6875.422
  3. Sallout B., Walker M. The fetal origin of adult diseases. J. Obstet. Gynaecol. 2003; 23(5): 555-60. https://dx.doi.org/10.1080/0144361031000156483
  4. Pathare-Ingawale P., Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst. Biol. Reprod. Med. 2022; 68(1): 3-12. https://dx.doi.org/10.1080/19396368.2021.1980132
  5. Travaglino A., Raffone A., Saccone G., Migliorini S., Maruotti G.M., Esposito G. et al. Placental morphology, apoptosis, angiogenesis and epithelial mechanisms in early-onset preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 234: 200-6. https://dx.doi.org/10.1016/j.ejogrb.2018.12.039
  6. González-Rojas A., Valencia-Narbona M. Neurodevelopmental disruptions in children of preeclamptic mothers: pathophysiological mechanisms and consequences. Int. J. Mol. Sci. 2024; 25(7): 3632. https://dx.doi.org/10.3390/ijms25073632
  7. Spinillo A., Dominoni M., Mas F.D., Cesari S., Fiandrino G., Gardella B. Placental fetal vascular malperfusion, neonatal neurologic morbidity, and infant neurodevelopmental outcomes: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2023; 229(6): 632-640.e2. https://dx.doi.org/10.1016/j.ajog.2023.06.014
  8. Kratimenos P., Penn A.A. Placental programming of neuropsychiatric disease. Pediatr. Res. 2019; 86(2): 157-64. https://dx.doi.org/10.1038/s41390-019-0405-9
  9. Gardella B., Dominoni M., Scatigno A.L., Cesari S., Fiandrino G., Orcesi S. et al. What is known about neuroplacentology in fetal growth restriction and in preterm infants: A narrative review of literature. Front. Endocrinol. (Lausanne). 2022; 13: 936171. https://dx.doi.org/10.3389/fendo.2022.936171
  10. Nosarti C., Reichenberg A., Murray R.M., Cnattingius S., Lambe M.P., Yin L. et al. Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry. 2012; 69(6): E1-8. https://dx.doi.org/10.1001/archgenpsychiatry.2011.1374
  11. Ursini G., Punzi G., Chen Q., Marenco S., Robinson J.F., Porcelli A. et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med. 2018; 24(6): 792-801. https://dx.doi.org/10.1038/s41591-018-0021-y
  12. Werling D.M., Geschwind D.H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 2013; 26(2): 146-53. https://dx.doi.org/10.1097/WCO.0b013e32835ee548
  13. Cvitic S., Longtine M.S., Hackl H., Wagner K., Nelson M.D., Desoye G. et al. The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS One. 2013; 8(10): e79233. https://dx.doi.org/10.1371/journal.pone.0079233
  14. Bianco-Miotto T., Mayne B.T., Buckberry S., Breen J., Rodriguez Lopez C.M., Roberts C.T. Recent progress towards understanding the role of DNA methylation in human placental development. Reproduction. 2016; 152(1): R23-30. https://dx.doi.org/10.1530/REP-16-0014
  15. De Falco M., Fedele V., Cobellis L., Mastrogiacomo A., Leone S., Giraldi D. et al. Immunohistochemical distribution of proteins belonging to the receptor-mediated and the mitochondrial apoptotic pathways in human placenta during gestation. Cell Tissue Res. 2004; 318(3): 599-608. https://dx.doi.org/10.1007/s00441-004-0969-4
  16. Zhou Z., Zhang Q., Lu X., Wang R., Wang H., Wang Y.L. et al. The proprotein convertase furin is required for trophoblast syncytialization. Cell Death Dis. 2013; 4(4): e593. https://dx.doi.org/10.1038/cddis.2013.106
  17. Brunton P.J., Russell J.A., Hirst J.J. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog. Neurobiol. 2014; 113: 106-36. https://dx.doi.org/10.1016/j.pneurobio.2013.08.005
  18. Schumacher M., Mattern C., Ghoumari A., Oudinet J.P., Liere P., Labombarda F. et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog. Neurobiol. 2014; 113: 6-39. https://dx.doi.org/10.1016/j.pneurobio.2013.09.004
  19. Fallen S., Baxter D., Wu X., Kim T.K., Shynlova O., Lee M.Y. et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J. Cell Mol. Med. 2018; 22(5): 2760-73. https://dx.doi.org/10.1111/jcmm.13570
  20. Пекарева Е.О., Баранов И.И., Пекарев О.Г. Применение клеточных технологий в экспериментальной и клинической акушерской практике (обзор литературы). Акушерство и гинекология: новости, мнения, обучение. 2022; 10(4): 31-7. [Pekareva E.O., Baranov I.I., Pekarev O.G. Use of cell technologies in experimental and clinical obstetric practice (literature review). Obstetrics and Gynecology: News, Opinions, Training. 2022; 10(4): 31-7. (in Russian)]. https://dx.doi.org/10.33029/2303-9698-2022-10-4-31-37
  21. Dachew B.A., Mamun A., Maravilla J.C., Alati R. Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br. J. Psychiatry. 2018; 212(3): 142-7. https://dx.doi.org/10.1192/bjp.2017.27
  22. Maher G.M., O'Keeffe G.W., Kearney P.M., Kenny L.C., Dinan T.G., Mattsson M. et al. Association of hypertensive disorders of pregnancy with risk of neurodevelopmental disorders in offspring: a systematic review and meta-analysis. JAMA Psychiatry. 2018; 75(8): 809-19. https://dx.doi.org/10.1001/jamapsychiatry.2018.0854
  23. Gumusoglu S.B., Chilukuri A.S.S., Santillan D.A., Santillan M.K., Stevens H.E. Neurodevelopmental outcomes of prenatal preeclampsia exposure. Trends Neurosci. 2020; 43(4): 253-68. https://dx.doi.org/10.1016/j.tins.2020.02.003
  24. Kay V.R., Rätsep M.T., Figueiró-Filho E.A., Croy B.A. Preeclampsia may influence offspring neuroanatomy and cognitive function: a role for placental growth factor. Biol. Reprod. 2019; 101(2): 271-83. https://dx.doi.org/10.1093/biolre/ioz095
  25. Liu D., Gao Q., Wang Y., Xiong T. Placental dysfunction: the core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta. 2022; 126: 224-32. https://dx.doi.org/10.1016/j.placenta.2022.07.014.
  26. Scott H., Phillips T.J., Stuart G.C., Rogers M.F., Steinkraus B.R., Grant S. et al. Preeclamptic placentae release factors that damage neurons: implications for fetal programming of disease. Neuronal Signal. 2018; 2(4): NS20180139. https://dx.doi.org/10.1042/NS20180139
  27. Walker C.K., Krakowiak P., Baker A., Hansen R.L., Ozonoff S., Hertz-Picciotto I. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015; 169(2): 154-62. https://dx.doi.org/10.1001/jamapediatrics.2014.2645
  28. Giambrone A.B., Logue O.C., Shao Q., Bidwell G.L. 3rd, Warrington J.P. Perinatal micro-bleeds and neuroinflammation in E19 rat fetuses exposed to utero-placental ischemia. Int. J. Mol. Sci. 2019; 20(16): 4051. https://dx.doi.org/10.3390/ijms20164051
  29. McClendon E., Shaver D.C., Degener-O'Brien K., Gong X., Nguyen T., Hoerder-Suabedissen A. et al. Transient hypoxemia chronically disrupts maturation of preterm fetal ovine subplate neuron arborization and activity. J. Neurosci. 2017; 37(49): 11912-29. https://dx.doi.org/10.1523/JNEUROSCI.2396-17.201
  30. McClendon E., Wang K., Degener-O'Brien K., Hagen M.W., Gong X., Nguyen T. et al. Transient hypoxemia disrupts anatomical and functional maturation of preterm fetal ovine CA1 pyramidal neurons. J. Neurosci. 2019; 39(40): 7853-71. https://dx.doi.org/10.1523/JNEUROSCI.1364-19.2019
  31. Curtis D.J., Sood A., Phillips T.J., Leinster V.H., Nishiguchi A., Coyle C. et al. Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. Exp. Neurol. 2014; 261:386-95. https://dx.doi.org/10.1016/j.expneurol.2014.05.003
  32. McColl E.R., Piquette-Miller M. Poly(I:C) alters placental and fetal brain aminoacidtransportin a rat model of maternal immune activation. Am. J. Reprod. Immunol. 2019; 81(6): e13115. https://dx.doi.org/10.1111/aji.13115
  33. Yang M., Lu Y., Piao W., Jin H. The translational regulation in mTORPathway. Biomolecules. 2022; 12(6): 802. https://dx.doi.org/10.3390/biom12060802
  34. Goeden N., Velasquez J., Arnold K.A., Chan Y., Lund B.T., Anderson G.M. et al. Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain. J. Neurosci. 2016; 36(22): 6041-9. https://dx.doi.org/10.1523/JNEUROSCI.2534-15.2016
  35. Yang C.J., Tan H.P., Du Y.J. The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience. 2014; 267: 1-10. https://dx.doi.org/10.1016/j.neuroscience.2014.02.021
  36. Kay V.R., Rätsep M.T., Cahill L.S., Hickman A.F., Zavan B., Newport M.E. et al. Effects of placental growth factor deficiency on behavior, neuroanatomy, and cerebrovasculature of mice. Physiol. Genomics. 2018; 50(10): 862-75. https://dx.doi.org/10.1152/physiolgenomics.00076.2018
  37. Watson E.C., Grant Z.L., Coultas L. Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol. Life Sci. 2017; 74(24): 4387-403. https://dx.doi.org/10.1007/s00018-017-2577-y
  38. Lecuyer M., Laquerrière A., Bekri S., Lesueur C., Ramdani Y., Jégou S. et al. PLGF, a placental marker of fetal brain defects after in utero alcohol exposure. Acta Neuropathol. Commun. 2017; 5(1): 44. https://dx.doi.org/10.1186/s40478-017-0444-6
  39. Gehmeyr J., Maghnouj A., Tjaden J., Vorgerd M., Hahn S., Matschke V. et al. Disabling VEGF-response of Purkinje cells by downregulation of KDR via miRNA-204-5p. Int. J. Mol. Sci. 2021; 22(4): 2173. https://dx.doi.org/10.3390/ijms22042173
  40. Schmahmann J.D. The cerebellum and cognition. Neurosci. Lett. 2019; 688: 62-75. https://dx.doi.org/10.1016/j.neulet.2018.07.005
  41. Mora-Palazuelos C., Villegas-Mercado C.E., Avendaño-Félix M., Lizárraga-Verdugo E., Romero-Quintana J.G., López-Gutiérrez J. et al. The role of ncRNAs in the immune dysregulation of preeclampsia. Int. J. Mol. Sci. 2023; 24(20): 15215. https://dx.doi.org/10.3390/ijms242015215
  42. Jancsura M.K., Schmella M.J., Helsabeck N., Gillespie S.L., Roberts J.M., Conley Y.P. et al. Inflammatory markers are elevated in early pregnancy, but not late pregnancy, in women with overweight and obesity that later develop preeclampsia. Am. J. Reprod. Immunol. 2023; 90(3): e13763. https://dx.doi.org/ 10.1111/aji.13763
  43. Gumusoglu S.B., Chilukuri A.S.S., Hing B.W.Q., Scroggins S.M., Kundu S., Sandgren J.A. et al. Altered offspring neurodevelopment in an arginine vasopressin preeclampsia model. Transl. Psychiatry. 2021; 11(1): 79. https://dx.doi.org/10.1038/s41398-021-01205-0
  44. Novak C.M., Lee J.Y., Ozen M., Tsimis M.E., Kucirka L.M., McLane M.W. et al. Increased placental Tcell trafficking results in adverse neurobehavior alout comes in offspring exposed to sub-chronicmaternal inflammation. Brain Behav. Immun. 2019; 75: 129-36. https://dx.doi.org/10.1016/j.bbi.2018.09.025
  45. Matelski L., Morgan R.K., Grodzki A.C., Van de Water J., Lein P.J. Effects of cytokines on nuclear factor-kappa B, cell viability, and synaptic connectivity in a human neuronal cell line. Mol. Psychiatry. 2021; 26(3): 875-87. https://dx.doi.org/10.1038/s41380-020-0647-2
  46. Rudolph M.D., Graham A.M., Feczko E., Miranda-Dominguez O., Rasmussen J.M., Nardos R. et al. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 2018; 21(5): 765-72. https://dx.doi.org/10.1038/s41593-018-0128-y
  47. Gumusoglu S.B., Hing B.W.Q., Chilukuri A.S.S., Dewitt J.J., Scroggins S.M., Stevens H.E. Chronic maternal interleukin-17 and autism-related cortical gene expression, neurobiology, and behavior. Neuropsychopharmacology. 2020; 45(6): 1008-17. https://dx.doi.org/10.1038/s41386-020-0640-0
  48. Valencia-Ortega J., Zárate A., Saucedo R., Hernández-Valencia M., Cruz J.G., Puello E. Placental proinflammatory state and maternal endothelial dysfunction in preeclampsia. Gynecol. Obstet. Invest. 2019; 84(1): 12-9. https://dx.doi.org/10.1159/000491087
  49. Sahay A., Kale A., Joshi S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides. 2020; 83: 102075. https://dx.doi.org/10.1016/j.npep.2020.102075
  50. Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., Moryś J. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol. Neurobiol. 2018; 38(3): 579-93. https://dx.doi.org/10.1007/s10571-017-0510-4.
  51. Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front. Cell Neurosci. 2019; 13: 363. https://dx.doi.org/10.3389/fncel.2019.00363
  52. Lim Y.C., Li J., Ni Y., Liang Q., Zhang J., Yeo G.S.H. et al. A complex association between DNA methylation and gene expression in human placenta at first and third trimesters. PLoS One. 2017; 12(7): e0181155. https://dx.doi.org/10.1771/journal.pone.0181155
  53. Leavey K., Benton S.J., Grynspan D., Bainbridge S.A., Morgen E.K., Cox B.J. Gene markers of normal villous maturation and their expression in placentas with maturational pathology. Placenta. 2017; 58: 52-9. https://dx.doi.org/10.1016/j.placenta.2017.08.005
  54. Wang B., Wang P., Parobchak N., Treff N., Tao X., Wang J. et al. Integrated RNA-seq and ChIP-seq analysis reveals a feed-forward loop regulating H3K9ac and key labor drivers in human placenta. Placenta. 2019; 76: 40-50. https://dx.doi.org/10.1016/j.placenta.2019.01.010
  55. Szilagyi A., Gelencser Z., Romero R., Xu Y., Kiraly P., Demeter A. et al. Placenta-specific genes, their regulation during villous trophoblast differentiation and dysregulation in preterm preeclampsia. Int. J. Mol. Sci. 2020; 21(2): 628. https://dx.doi.org/10.3390/ijms21020628
  56. Scott H. Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal. 2017; 1(4): NS20170112. https://dx.doi.org/10.1042/NS20170112
  57. Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011; 29(4): 341-5. https://dx.doi.org/10.1038/nbt.1807
  58. Echeverria D., Pears S., Iliopoulos J., Shanmugalingam R., Ogle R., Zsengeller Z.K. et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat. Biotechnol. 2018; 10.1038/nbt.4297. https://dx.doi.org/10.1038/nbt.4297

Received 14.01.2025

Accepted 16.04.2025

About the Authors

Natalya A. Nikitina, Dr. Med. Sci., Professor, Department of Obstetrics and Gynecology No. 1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str. 8, bld. 2, natnikitina@list.ru,
https://orcid.org/0000-0001-8659-9963
Iraida S. Sidorova, Dr. Med. Sci., Professor, Department of Obstetrics and Gynecology No. 1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str. 8, bld. 2, sidorovais@yandex.ru,
https://orcid.org/0000-0003-2209-8662
Nigar I. Amiraslanova, Resident, Department of Obstetrics and Gynecology No. 1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str. 8, bld. 2, amiraslanova00@mail.ru,
https://orcid.org/0009-0008-7446-3995
Mikhail B. Ageev, PhD, Associate Professor, Department of Obstetrics and Gynecology No. 1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str. 8, bld. 2, mikhaageev@yandex.ru,
https://orcid.org/0000-0002-6603-804X
Маriia N. Gololobova, Resident, Department of Obstetrics and Gynecology No. 1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str. 8, bld. 2, gololobova.mar@gmail.com,
https://orcid.org/0009-0002-9141-8631

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.