Preeclampsia: contemporary concepts of its pathogenesis

Boris D.A., Shmakov R.G.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
The review analyzes Russian and foreign literature sources on the pathogenesis of preeclampsia. The latter is considered to be an urgent and unsolved problem in modern obstetrics. The wide prevalence, the complexity of etiopathogenesis, the lack of accurate and highly informative methods for prediction and diagnosis, as well as the insufficient effectiveness of therapeutic and preventive measures are a cause of higher global maternal and perinatal morbidity and mortality rates of preeclampsia. Understanding the pathogenetic mechanisms implicated in the development and progression of preeclampsia is of fundamental importance and plays an important role in specifying the causes of this pregnancy complication, which should be treated.
Conclusion: Based on the analysis of the data available in the literature, the authors summarize the current aspects of the development and progression of preeclampsia.

Keywords

preeclampsia
eclampsia
pathogenesis of preeclampsia

References

  1. Ives C.W., Sinkey R., Rajapreyar I., Tita A.T.N., Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020; 76(14): 1690-702. https://dx.doi.org/10.1016/j.jacc.2020.08.014.
  2. Nirupama R., Divyashree S., Janhavi P., Muthukumar S.P., Ravindra P.V. Preeclampsia: pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod. 2021; 50(2):101975. https://dx.doi.org/10.1016/j.jogoh.2020.101975.
  3. Poon L.C., Shennan A., Hyett J.A., Kapur A., Hadar E., Divakar H. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019; 145(Suppl. 1): 1-33. https://dx.doi.org/10.1002/ijgo.12802.
  4. Wójtowicz A., Zembala-Szczerba M., Babczyk D., Kołodziejczyk-Pietruszka M., Lewaczyńska O., Huras H. Early- and late-onset preeclampsia: a comprehensive cohort study of laboratory and clinical findings according to the new ISHHP criteria. Int. J. Hypertens. 2019; 2019: 4108271.https://dx.doi.org/10.1155/2019/4108271.
  5. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin No. 203: chronic hypertension in pregnancy. Obstet. Gynecol. 2019; 133(1): e26-e50.
  6. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020; 135(6): e237-e260. https://dx.doi.org/10.1097/AOG.0000000000003020.
  7. Гайсин И.Р., Исхакова А.С. Диагностика и лечение гипертензивных состояний беременности. Артериальная гипертензия. 2021; 27(2): 146-69.https://dx.doi.org/10.18705/1607-419X2021-27-2-146-169. [Gaisin I.R.,Iskhakova A.S. Diagnosis and treatment of hypertensive disorders of pregnancy: a narrative review. Arterial’naya Gipertenziya=Arterial Hypertension. 2021; 27(2): 146-169. (in Russian)]. https://dx.doi.org/10.18705/1607-419X2021-27-2-146-169.
  8. Helmo F.R., Lopes A.M.M., Carneiro A.C.D.M., Campos C.G., Silva P.B., Dos Reis Monteiro M.L.G. et al. Angiogenic and antiangiogenic factors in preeclampsia. Pathol. Res. Pract. 2018; 214(1): 7-14. https://dx.doi.org/10.1016/j.prp.2017.10.021.
  9. Garrido-Gómez T., Castillo-Marco N., Cordero T., Simón C. Decidualization resistance in the origin of preeclampsia. Am. J. Obstet. Gynecol. 2022; 226(2, Suppl.): S886-94. https://dx.doi.org/10.1016/j.ajog.2020.09.039.
  10. Hariharan N., Shoemaker A., Wagner S. Pathophysiology of hypertension in preeclampsia. Microvasc. Res. 2017; 109: 34-7. https://dx.doi.org/10.1016/j.mvr.2016.10.002.
  11. El-Sayed A.A.F. Preeclampsia: a review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan. J. Obstet. Gynecol. 2017; 56(5): 593-8. https://dx.doi.org/10.1016/j.tjog.2017.08.004.
  12. Staff A.C., Fjeldstad H.E., Fosheim I.K., Moe K., Turowski G., Johnsen G.M. et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am. J. Obstet. Gynecol. 2022; 226(2, Suppl.): S895-906.https://dx.doi.org/10.1016/j.ajog.2020.09.026.
  13. James-Allan L.B., Whitley G.S., Leslie K., Wallace A.E., Cartwright J.E. Decidual cell regulation of trophoblast is altered in pregnancies at risk of pre-eclampsia. J. Mol. Endocrinol. 2018; 60(3): 239-46. https://dx.doi.org/10.1530/JME-17-0243.
  14. Falco M.L., Sivanathan J., Laoreti A., Thilaganathan B., Khalil A. Placental histopathology associated with pre-eclampsia: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017; 50(3): 295-301.https://dx.doi.org/10.1002/uog.17494.
  15. Wadhwani P., Saha P.K., Kalra J.K., Gainder S., Sundaram V. A study to compare maternal and perinatal outcome in early vs. late onset preeclampsia. Obstet. Gynecol. Sci. 2020; 63(3): 270-7. https://dx.doi.org/10.5468/ogs.2020.63.3.270.
  16. Burton G.J., Redman C.W., Roberts J.M., Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019; 366: l2381.https://dx.doi.org/10.1136/bmj.l2381.
  17. Labarrere C.A., DiCarlo H.L., Bammerlin E., Hardin J.W., Kim Y.M., Chaemsaithong P. et al. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta. Am. J. Obstet. Gynecol. 2017; 216(3): 287.e1-287.e16.https://dx.doi.org/10.1016/j.ajog.2016.12.029.
  18. Tomimatsu T., Mimura K., Matsuzaki S., Endo M., Kumasawa K., Kimura T. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int. J. Mol. Sci. 2019; 20(17): 4246. https://dx.doi.org/10.3390/ijms20174246.
  19. Cerdeira A.S., Agrawal S., Staff A.C., Redman C.W., Vatish M. Angiogenic factors: potential to change clinical practice in pre-eclampsia? BJOG. 2018; 125(11): 1389-95. https://dx.doi.org/10.1111/1471-0528.15042.
  20. Борис Д.А., Волгина Н.Е., Красный А.М., Тютюнник В.Л., Кан Н.Е. Прогнозирование преэклампсии по содержанию CD16-негативных моноцитов. Акушерство и гинекология. 2019; 7: 49-55.https://dx.doi.org/10.18565/aig.2019.7.49-55. [Boris D.A., Volgina N.E., Krasnyi A.M., Tyutyunnik V.L., Kan N.E. Prediction of preeclampsia on the couts of CD-16 negative monocytes. Obstetrics and Gynecology. 2019; (7): 49-55. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.7.49-55.
  21. Melchiorre K., Giorgione V., Thilaganathan B. The placenta and preeclampsia: villain or victim? Am. J. Obstet. Gynecol. 2022; 226(2, Suppl.): S954-62.https://dx.doi.org/10.1016/j.ajog.2020.10.024.
  22. McMaster-Fay R.A. Uteroplacental vascular syndromes: theories, hypotheses and controversies. Clin. Obstet. Gynecol. Reprod. Med. 2018; 4(6): 2-5.https://dx.doi.org/10.15761/COGRM.1000239.
  23. Ходжаева З.С., Холин А.М., Шувалова М.П., Иванец Т.Ю., Демура С.А., Галичкина И.В. Российская модель оценки эффективности теста на преэклампсию sFlt-1/PlGF. Акушерство и гинекология. 2019; 2: 52-8. https://dx.doi.org/10.18565/aig.2019.2.52-58. [Khodzhaeva Z.S., Kholin A.M., Shuvalova M.P., Ivanets T.Yu., Demura S.A., Galichkina I.V. A Russian model for evaluating the efficiency of the sFlt-1/PlGF test for preeclampsia. Obstetrics and Gynecology. 2019; 2: 52-58. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.2.52-58.
  24. Pérez-Roque L., Núñez-Gómez E., Rodríguez-Barbero A., Bernabéu C., López-Novoa J.M., Pericacho M. Pregnancy-induced high plasma levels of soluble endoglin in mice lead to preeclampsia symptoms and placental abnormalities. Int. J. Mol. Sci. 2020; 22(1): 165. https://dx.doi.org/10.3390/ijms22010165.
  25. Travaglino A., Raffone A., Saccone G., Migliorini S., Maruotti G.M., Esposito G. et al. Placental morphology, apoptosis, angiogenesis and epithelial mechanisms in early-onset preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 234: 200-6. https://dx.doi.org/10.1016/j.ejogrb.2018.12.039.
  26. Phipps E., Prasanna D., Brima W., Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin. J. Am. Soc. Nephrol. 2016; 11(6): 1102-13. https://dx.doi.org/10.2215/CJN.12081115.
  27. Nogueira Reis Z.S., Pereira J.B., Costa L.A.C., Barra J.S. Soluble endoglin in urine as an early-pregnancy preeclampsia marker: antenatal longitudinal feasibility study. J. Obstet. Gynaecol. 2021; 41(5): 693-8. https://dx.doi.org/10.1080/01443615.2020.1789851.
  28. Perucci L.O., Gomes K.B., Freitas L.G., Godoi L.C., Alpoim P.N., Pinheiro M.B. et al. Soluble endoglin, transforming growth factor-Beta 1 and soluble tumor necrosis factor alpha receptors in different clinical manifestations of preeclampsia. PLoS One. 2014; 9(5): e97632. https://dx.doi.org/10.1371/journal.pone.0097632.
  29. Zhang L., Li X., Zhou C., You Z., Zhang J., Cao G. The diagnosis values of serum STAT4 and sEng in preeclampsia. J. Clin. Lab. Anal. 2020; 34(2): e23073. https://dx.doi.org/10.1002/jcla.23073.
  30. Iriyama T., Wang W., Parchim N.F., Song A., Blackwell S.C., Sibai B.M. et al. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia. Hypertension. 2015; 65(6): 1307-15. https://dx.doi.org/10.1161/HYPERTENSIONAHA.115.05314.
  31. Sriyanti R., Mose J.C., Masrul M., Suharti N. The difference in maternal serum hypoxia-inducible factors-1α levels between early onset and late-onset preeclampsia. Open Access Maced. J. Med. Sci. 2019; 7(13): 2133-7.https://dx.doi.org/10.3889/oamjms.2019.601.
  32. Albers R.E., Kaufman M.R., Natale B.V., Keoni C., Kulkarni-Datar K., Min S. et al. Trophoblast-specific expression of Hif-1α results in preeclampsia-like symptoms and fetal growth restriction. Sci. Rep. 2019; 9(1): 2742.https://dx.doi.org/10.1038/s41598-019-39426-5.
  33. Harati-Sadegh M., Kohan L., Teimoori B., Mehrabani M., Salimi S. The association of the placental Hypoxia-inducible factor1-α polymorphisms and HIF1-α mRNA expression with preeclampsia. Placenta. 2018; 67: 31-7.https://dx.doi.org/10.1016/j.placenta.2018.05.005.
  34. Kimura C., Watanabe K., Iwasaki A., Mori T., Matsushita H., Shinohara K., Wakatsuki A. The severity of hypoxic changes and oxidative DNA damage in the placenta of early-onset preeclamptic women and fetal growth restriction. J. Matern. Fetal Neonatal Med. 2013; 26(5): 491-6. https://dx.doi.org/10.3109/14767058.2012.733766.
  35. Ma Y., Ye Y., Zhang J., Ruan C.C., Gao P.J. Immune imbalance is associated with the development of preeclampsia. Medicine (Baltimore). 2019; 98(14): e15080. https://dx.doi.org/10.1097/MD.0000000000015080.
  36. Elchaninov A.V., Fatkhudinov T.K., Vishnyakova P.A., Lokhonina A.V., Sukhikh G.T. Phenotypical and functional polymorphism of liver resident macrophages. Cells. 2019; 8(9): 1032. https://dx.doi.org/10.3390/cells8091032.
  37. Борис Д.А., Тютюнник В.Л., Кан Н.Е., Щеголев А.И., Синицына В.А., Садекова А.А., Красный А.М. Особенности изменения клеток моноцитарно-макрофагального звена в плаценте при преэклампсии. Акушерство и гинекология. 2021; 10: 48-54. https://dx.doi.org/10.18565/aig.2021.10.48-54. [Boris D.A., Tyutyunnik V.L., Kan N.E., Shchegolev A.I., Sinitsyna V.A., Sadekova A.A., Krasnyi A.M. Features of changes in the monocyte-macrophage cells in the placenta during preeclampsia. Obstetrics and Gynecology. 2021; 10: 48-54. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.10.48-54.
  38. Jung E., Romero R., Yeo L., Gomez-Lopez N., Chaemsaithong P., Jaovisidha A. et al. The etiology of preeclampsia. Am. J. Obstet. Gynecol. 2022; 226(2, Suppl.): S844-66. https://dx.doi.org/10.1016/j.ajog.2021.11.1356.
  39. Mruma H.A., McQuillan R., Norrie J. The association of malaria infection and gestational hypertension in Africa: systematic review and meta-analysis. J. Glob. Health. 2020; 10(2): 020417. https://dx.doi.org/10.7189/jogh.10.020417.
  40. Shiadeh M.N., Riahi S.M., Khani S., Alizadeh S., Hosseinzadeh R., Hasanpour A.H. et al. Human immunodeficiency virus and risk of pre-eclampsia and eclampsia in pregnant women: a meta-analysis on cohort studies. Pregnancy Hypertens. 2019; 17: 269-75. https://dx.doi.org/10.1016/j.preghy.2019.07.008.
  41. Pereira M.M., Mainigi M., Strauss J.F. Secretory products of the corpus luteum and preeclampsia. Hum. Reprod. Update. 2021; 27(4): 651-72.https://dx.doi.org/10.1093/humupd/dmab003.
  42. Lan K.C., Lai Y.J., Cheng H.H., Tsai N.C., Su Y.T., Tsai C.C., Hsu T.Y. Levels of sex steroid hormones and their receptors in women with preeclampsia. Reprod. Biol. Endocrinol. 2020; 18(1): 12. https://dx.doi.org/10.1186/s12958-020-0569-5.
  43. Shin Y.Y., Jeong J.S., Park M.N., Lee J.E., An S.M., Cho W.S. et al. Regulation of steroid hormones in the placenta and serum of women with preeclampsia. Mol. Med. Rep. 2018; 17(2): 2681-8. https://dx.doi.org/10.3892/mmr.2017.8165.
  44. Wan J., Hu Z., Zeng K., Yin Y., Zhao M., Chen M., Chen Q. The reduction in circulating levels of estrogen and progesterone in women with preeclampsia. Pregnancy Hypertens. 2018; 11: 18-25. https://dx.doi.org/10.1016/j.preghy.2017.12.003.
  45. Nezi M., Mastorakos G., Mouslech Z., Feingold K.R., Anawalt B., Boyce A. et al.; eds. Corticotropin releasing hormone and the immune/inflammatory response. In: Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. 2015 Jul 30. Available at: https://www.ncbi.nlm.nih.gov/books/NBK279017/
  46. Peixoto A.B., Rolo L.C., Nardozza L.M.M., Araujo Júnior E. Epigenetics and preeclampsia: programming of future outcomes. Methods Mol. Biol. 2018; 1710: 73-83. https://dx.doi.org/10.1007/978-1-4939-7498-6_6.
  47. Apicella C., Ruano C.S.M., Méhats C., Miralles F., Vaiman D. The role of epigenetics in placental development and the etiology of preeclampsia. Int. J. Mol. Sci. 2019; 20(11): 2837. https://dx.doi.org/10.3390/ijms20112837.
  48. Phipps E.A., Thadhani R., Benzing T., Karumanchi S.A. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 2019; 15(5): 275-89. https://dx.doi.org/10.1038/s41581-019-0119-6. Erratum in: Nat. Rev. Nephrol. 2019; 15(6): 386.
  49. Feng Y., Lian X., Guo K., Zhang G., Huang X. A comprehensive analysis of metabolomics and transcriptomics to reveal major metabolic pathways and potential biomarkers of human preeclampsia placenta. Front. Genet. 2022; 13: 1010657. https://dx.doi.org/10.3389/fgene.2022.1010657.
  50. Méhats C., Miralles F., Vaiman D. Nouveaux regards sur la prééclampsie [New perspectives on preeclampsia]. Med. Sci. (Paris). 2017; 33(12): 1079-88.https://dx.doi.org/10.1051/medsci/20173312015.

Received 07.08.2022

Accepted 22.11.2022

About the Authors

Daiana A. Boris, PhD, Researcher, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, +7(915)081-89-97, dayana_boris@mail.ru,
https://orcid.org/0000-0002-0387-4040, 117997, Russia, Moscow, Ac. Oparina str., 4.
Roman G. Shmakov, Dr. Med. Sci, Professor of the Russian Academy of Sciences, Director of the Institute of Obstetrics, V.I. Kulakov NMRC for OG&P, Ministry of Health
of Russia; Head Specialist in Obstetrics of Ministry of Health of Russia, +7(495)438-72-00, r_shmakov@oparina4.ru, https://orcid.org/0000-0002-2206-1002,
117997, Russia, Moscow, Ac. Oparina str., 4.

Authors’ contributions: Boris D.A., Shmakov R.G. – development of the design of the investigation, obtaining the data to be analyzed, review of publications on the topic of the article, writing the text of the manuscript.
Conflicts of interest: The authors declare that there are no possible conflicts of interest.
Funding: The investigation has been conducted within the framework of State Assignment 121032500100-3.
For citation: Boris D.A., Shmakov R.G. Preeclampsia: contemporary concepts of its pathogenesis.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 12: 12-17 (in Russian)
https://dx.doi.org/10.18565/aig.2022.213

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.