Features of interaction of Toll-like receptors with virus infection of the reproductive tract as a predictor of chronic endometritis

Ievleva K.D., Danusevich I.N., Suturina L.V.

Research Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
Chronic endometritis (CE) is an infectious and inflammatory disease of the uterine mucosa, which leads to impaired reproductive function. The mechanism of this disorder is associated with the activation of pro-inflammatory cytokines and with a change in the ratio of immune cell populations in the endometrial mucosa. There are few studies that directly or indirectly indicate an association between the carriage of infectious viruses and the development of chronic inflammation of reproductive organs. At the same time, the role of Toll-like receptors (TLRs) that are responsible for the recognition of bacterial and viral agents on the mucosal surfaces, in the development and course of pelvic infectious and inflammatory diseases is being actively studied.
The purpose of this review is to systematize the available information on the contribution of sexually transmitted viral infections to the development and course of CE and on the role of the molecular mechanisms of interaction of viral agents with TLRs. Literature was sought on January 19, 2022 to February 21, 2022, by using the scientific literature databases NCBI, PubMed, and Google Scholar (foreign sources), CyberLeninka and eLibrary (Russian sources). The review includes literature sources for the period 1986–2021.
The data presented in this review cannot lead to the conclusion that viral infections of the reproductive tract play a direct role in the development of CE with the involvement of TLRs. However, the presence of reproductive tract TLR expression and its change influenced by physiological factors (a cycle phase) or infectious agents, as well as in pelvic inflammatory diseases, reflect the need for study the role of these receptors in the development and course of CE. In addition, numerous studies pointing to the modeling effect of viruses on the functional activity of TLRs generate interest, which may be the reason for viral resistance against the immune system and provoke inflammatory reactions.
Conclusion: Thus, to study the role of the interaction of TLRs with viruses in the development of CE is a promising area not only for solving fundamental problems, but also for improving methods for diagnosing and treating this disease.

Keywords

chronic endometritis
viral infection
TLR
chronic inflammation
pelvic inflammatory diseases
herpes simplex virus
human papillomavirus
Epstein–Barr virus

References

  1. Kimura F., Takebayashi A., Ishida M., Nakamura A., Kitazawa J., Morimune A. et al. Review: Chronic endometritis and its effect on reproduction. J. Obstet. Gynaecol. Res. 2019; 45(5): 951-60. https://dx.doi.org/10.1111/jog.13937.
  2. Song D., Feng X., Zhang Q., Xia E., Xiao Y., Xie W. et al. Prevalence and confounders of chronic endometritis in premenopausal women with abnormal bleeding or reproductive failure. Reprod. Biomed. Online. 2018; 36(1): 78-83. https://dx.doi.org/10.1016/j.rbmo.2017.09.008.
  3. Cicinelli E., Matteo M., Tinelli R., Lepera A., Alfonso R., Indraccolo U. et al. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum. Reprod. 2015; 30(2): 323-30. https://dx.doi.org/10.1093/humrep/deu292.
  4. Jindal U.N., Verma S., Bala Y. Favorable infertility outcomes following anti-tubercular treatment prescribed on the sole basis of a positive polymerase chain reaction test for endometrial tuberculosis. Hum. Reprod. 2012; 27(5): 1368-74. https://dx.doi.org/10.1093/humrep/des076.
  5. Workowski K.A., Bachmann L.H., Chan P.A., Johnston C.M., Muzny C.A. et al. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm. Rep. 2021; 70(4): 1-187. https://dx.doi.org/10.15585/mmwr.rr7004a1.
  6. Puente E., Alonso L., Laganà A.S., Ghezzi F., Casarin J., Carugno J. Chronic endometritis: old problem, novel insights and future challenges. Int. J. Fertil. Steril. 2020; 13(4): 250-6. https://dx.doi.org/10.22074/ijfs.2020.5779.
  7. Гомболевская Н.А., Бурменская О.В., Демура Т.А., Марченко Л.А., Коган Е.А., Трофимов Д.Ю., Сухих Г.Т. Оценка экспрессии мРНК генов цитокинов в эндометрии при хроническом эндометрите. Акушерство и гинекология. 2013; 11: 35-40. [Gombolevskaya N.A., Burmenskaya O.V., Demura T.A., Marchenko L.A., Kogan E.A., Trofimov D.Yu., Sukhikh G.T. Estimation of the mRNA expression of cytokine genes in the endometrium in chronic endometritis. Obstetrics and Gynecology. 2013; 11: 35-40. (in Russian)].
  8. Таболова В.К., Корнеева И.Е., Донников А.Е., Бурменская О.В., Маслова М.А., Смольникова В.Ю. Профиль локальной экспрессии генов ростовых факторов и цитокинов в эндометрии периода «имплантационного окна» при хроническом эндометрите. Акушерство и гинекология. 2014; 12: 74-8. [Tabolova V.K., Korneeva I.E., Donnikov A.E., Burmenskaya O.V., Maslova M.A., Smolnikova V.Yu. The local endometrial expression profile of the growth factor and cytokine genes during the implantation window in chronic endometritis. Obstetrics and Gynecology. 2014; 12: 74-8. (in Russian)].
  9. Данусевич И.Н., Иванова Е.И., Михалевич И.М. Характеристика микробиоценоза генитального тракта и его роль в инициации воспалительного процесса в эндометрии у женщин с репродуктивными нарушениями. Acta Biomedica Scientifica. 2017; 2(5): 15-20. [Danusevich I.N., Ivanova E.I., Mikhalevich I.M. Characteristics of the microbiocenosis of the vaginal tract and its role in initiating inflammatory process in endometrium in women with reproductive disorders. Acta Biomedica Scientifica. 2017; 2(5: 15-20. (in Russian)]. 10.12737/article_5a3a0d6243ea24.16475434.
  10. Miller J.M., Binnicker M.J., Campbell S., Caroll K.C., Chapin K.C., Gilligan P.H. et al. A Guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018; 67(6): e1-e94. 10.1093/cid/ciy381.
  11. Cherpes T.L., Meyn L.A., Krohn M.A., Hillier S.L. Risk factors for infection with herpes simplex virus type 2: Role of smoking, douching, uncircumcised males, and vaginal flora. Sex. Transm. Dis. 2003; 30(5): 405-10. https://dx.doi.org/10.1097/00007435-200305000-00006.
  12. Kaul R., Nagelkerke N.J., Kimani J., Ngugi E., Bwayo J.J., MacDonald K.S. et al. Prevalent herpes simplex virus type 2 infection is associated with altered vaginal flora and an increased susceptibility to multiple sexually transmitted infections. J. Infect. Dis. 2007; 196(11): 1692-7. https://dx.doi.org/10.1086/522006.
  13. De Nardo D. Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine. 2015; 74(2): 181-9. https://dx.doi.org/10.1016/j.cyto.2015.02.025.
  14. Kurt-Jones E.A., Popova L., Kwinn L., Hayness L.M., Jones L.P, Tripp R.A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 2000; 1(5): 398-401. https://dx.doi.org/ 10.1038/80833.
  15. Bowie A., Kiss-Toth E., Symons J.A., Smith G.L., Dower S.K., O’Neill L.A.J. A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc. Natl. Acad. Sci. USA. 2000; 97(18): 10162-7. https://dx.doi.org/10.1073/pnas.160027697.
  16. Ariza M.-E., Glaser R., Kaumaya P.T.P., Jones C., Williams M.V. The EBV-encoded dUTPase activates NF-κB through the TLR2 and MyD88-dependent signaling pathway. J. Immunol. 2009; 182(2): 851-9. https://dx.doi.org/10.4049/jimmunol.182.2.851.
  17. Sen J., Liu X., Roller R., Knipe D.M. Herpes simplex virus US 3 tegument protein inhibits Toll-like receptor 2 signaling at or before TRAF6 ubiquitination. Virology. 2013; 439(2): 65-73. https://dx.doi.org/10.1016/j.virol.2013.01.026.
  18. Voropaeva N.M., Lazareva L.M., Danusevich I.N., Belkova N.L., Nemchenko U.M., Grigorova E.V. Microbiological study of vaginal microbiota and endometrium in women with chronic endometritis. Int. J. Biomed. 2021; 11(4): 511-4. https://dx.doi.org/10.21103/Article11(4)_OA17.
  19. Danusevich I.N., Sharifulin E.M., Nemchenko U.M., Kolesnikova L.I. Features of the immune system functioning with persistence of infectious agents in women with chronic endometrial inflammation and reproductive disorders. Int. J. Biomed. 2020; 10(4): 362-8. https://dx.doi.org/10.21103/Article10(4)_OA6.
  20. Lozano F.M., Bernabeu A., Liedo B., Morales R., Diaz M., Aranda F.I. et al. Characterization of the vaginal and endometrial microbiome in patients with chronic endometritis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021; 263: 25-32. https://dx.doi.org/10.1016/j.ejogrb.2021.05.045.
  21. Liu Y., Ko E.Y.N., Wong K.K.W., Chen X., Cheung W.C., Law T.S.M. et al. Endometrial microbiota in infertile women with and without chronic endometritis as diagnosed using a quantitative and reference range-based method. Fertil. Steril. 2019; 112(4): 707-17.e1. https://dx.doi.org/10.1016/j.fertnstert.2019.05.015.
  22. Moreno I., Cicinelli E., Garcia-Grau I., Gonzalez-Monfort M., Bau D., Villela F. et al. The diagnosis of chronic endometritis in infertile asymptomatic women: a comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am. J. Obstet. Gynecol. 2018; 218(6): 602.e1-602.e16. https://dx.doi.org/10.1016/j.ajog.2018.02.012.
  23. Wylie K., Mihindukulasuriya K., Zhou Y., Sodergren E., Storch G., Weinstock G. Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Med. 2014; 12: 71. https://dx.doi.org/10.1186/s12915-014-0071-7.
  24. Eskew A.M., Stout M.J., Bedick B.S., Riley J.K., Omurtag K.R., Jimenez P.T. et al. Association of the eukaryotic vaginal virome with prophylactic antibiotic exposure and reproductive outcomes in a subfertile population undergoing in vitro fertilisation: a prospective exploratory study. BJOG. 2020; 127(2): 208-16. https://dx.doi.org/10.1111/1471-0528.15951.
  25. Jakobsen R.R., Haahr T., Humaidan P., Jensen J.S., Kot W.P., Kastro-Mejia J.L. et al. Characterization of the vaginal DNA virome in health and dysbiosis. Viruses. 2020; 12(10): 1143. https://dx.doi.org/10.3390/v12101143.
  26. Abbai N.S., Nyirenda M., Naidoo S., Ramjee G. Prevalent herpes simplex virus-2 increases the risk of incident bacterial vaginosis in women from South Africa. AIDS Behav. 2018; 22(7): 2172-80. https://dx.doi.org/10.1007/s10461-017-1924-1.
  27. Masese L., Baeten J., Richardson B., Bukusi E., John-Stuart G., Jaoko W. et al. Incident herpes simplex virus type 2 infection increases the risk of subsequent episodes of bacterial vaginosis. J. Infect. Dis. 2014; 209(7):1023-7. https://dx.doi.org/10.1093/infdis/jit634.
  28. Clifford G.M., Rana R.K., Franceschi S., Smith J.S., Gough G., Pimenta G.M. Human papillomavirus genotype distribution in low-grade cervical lesions: Comparison by geographic region and with cervical cancer. Cancer Epidemiol. Biomarkers Prev. 2005; 14(5): 1157-64. https://dx.doi.org/10.1158/1055-9965.EPI-04-0812.
  29. Laniewski P., Barnes D., Goulder A., Cui H., Roe D.J., Chase D.M. et al. Linking cervicovaginal immune signatures, HPV and microbiota composition in cervical carcinogenesis in non-Hispanic and Hispanic women. Sci. Rep. 2018; 8(1): 7593. https://dx.doi.org/10.1038/s41598-018-25879-7.
  30. Shannon B., Yi T.J., Perusini S., Gajer P., Ma B., Humphrys M.S. et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal Immunol. 2017; 10(5): 1310-9. https://dx.doi.org/10.1038/mi.2016.129.
  31. Smith J.S., Munnoz N., Herrero R., Eluf-Netto J., Ngelangel C., Franceschi S. et al. Evidence for Chlamydia trachomatis as a human papillomavirus cofactor in the etiology of invasive cervical cancer in Brazil and the Philippines. J. Infect. Dis. 2002; 185(3): 324-31. 10.1086/338569.
  32. Boehme K.W., Guerrero M., Compton T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 2006; 177(10): 7094-102. https://dx.doi.org/10.4049/jimmunol.177.10.7094.
  33. Zhang Z., Trippler M., Real C., Werner M., Luo X., Schefczyk S. et al. Hepatitis B virus particles activate Toll-Like receptor 2 signaling initially upon infection of primary human hepatocytes. Hepatology. 2020; 72(3): 829-44. https://dx.doi.org/10.1002/hep.31112.
  34. Leonie E., Van Houten A., Kramer A., McLuskey A., Karels B., Themmen A.P.N. et al. Reproductive and metabolic phenotype of a mouse model of PCOS. Endocrinology. 2012; 153(6): 2861-9. https://dx.doi.org/10.1210/en.2011-1754.
  35. Kurt-Jones E.A., Chan M., Zhou S., Wang J., Reed G., Bronson R. et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. USA. 2004; 101(5): 1315-20. https://dx.doi.org/10.1073/pnas.0308057100.
  36. Hoffmann M., Zeisel M.B., Jilg N., Paranhos-Baccala G., Stoll-Keller F., Wakita T. et al. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles. J. Innate Immun. 2009; 1(5): 446-54. https://dx.doi.org/10.1159/000226136.
  37. Georgel P., Jiang Z., Kunz S., Janssen E., Mols J., Hoebe K. et al. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology. 2007; 362(2): 304-13. https://dx.doi.org/10.1016/j.virol.2006.12.032.
  38. Del Corno M., Cappon A., Donninelli G., Varano B., Marra F., Gessani S. HIV-1 gp120 signaling through TLR4 modulates innate immune activation in human macrophages and the biology of hepatic stellate cells. J. Leukoc. Biol. 2016; 100(3): 599-606. https://dx.doi.org/10.1189/jlb.4A1215-534R.
  39. Piccinini A.M., Midwood K.S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010; 2010: 672395. https://dx.doi.org/10.1155/2010/672395.
  40. Alexopoulou L., Agnieszka C.H., Flavell R.A. Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature. 2001; 413(6785): 732-8. https://dx.doi.org/10.1038/35099560.
  41. Reinert L.S., Harder L., Holm C.K., Iversen M.B., Hora K.I., Dagnæs-Hansen F. et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J. Clin. Invest. 2012; 122(4): 1368-76. https://dx.doi.org/10.1172/JCI60893.
  42. Kawai T., Akira S. Innate immune recognition of viral infection. Nat. Immunol. 2006; 7(2):131-7. https://dx.doi.org/10.1038/ni1303.
  43. Lim W.H., Kireta S., Russ G.R., Toby P., Coates H. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood. 2007; 109(3): 1043-50. https://dx.doi.org/10.1182/blood-2005-12-024802.
  44. Lund J., Sato A., Akira S., Medzhitov R., Iwasaki A. Brief definitive report Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. J. Exp. Med. 2003; 198(3): 513-20. https://dx.doi.org/10.1084/jem.20030162.
  45. Hochrein H., Schlatter B., Wagner C., Schmitz F., Schiemann M., Bauer S. et al. Herpes simplex virus type-1 induces IFN-production via Toll-like receptor 9-dependent and-independent pathways. Proc. Natl. Acad. Sci. USA. 2004; 101(31):11416-21. https://dx.doi.org/10.1073/pnas.0403555101.
  46. Varani S., Cederarv M., Feld S., Tammik C., Frascaroli G., Landini M.P. et al. Human cytomegalovirus differentially controls B cell and T cell responses through effects on plasmacytoid dendritic cells. J. Immunol. 2007; 179(11): 7767-76. https://dx.doi.org/10.4049/jimmunol.179.11.7767.
  47. Farías M., Duarte L., Tognarelli E., González P. Herpes simplex virus interference with immunity: focus on dendritic cells. Virulence. 2021; 12(1): 2583-607. https://dx.doi.org/10.1080/21505594.2021.1980990.
  48. Guggemoos S., Hangel D., Hamm S., Heit A., Bauer S., Adler H. TLR9 contributes to antiviral immunity during gammaherpesvirus infection. J. Immunol. 2008; 180(1): 438-43. https://dx.doi.org/10.4049/jimmunol.180.1.438.
  49. Slade J., Hall J.V., Kintner J., Schoborg R.V. Chlamydial pre-infection protects from subsequent herpes simplex virus-2 challenge in a murine vaginal super-infection model. PLoS One. 2016; 11(1): e0146186. https://dx.doi.org/10.1371/journal.pone.0146186.
  50. Nasu K., Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm. 2010; 2010: 976024. https://dx.doi.org/10.1155/2010/976024.
  51. Aflatoonian R., Tuckerman E., Elliott S.L., Bruce C., Aflatoonian A., Li T.C. et al. Menstrual cycle-dependent changes of Toll-like receptors in endometrium. Hum. Reprod. 2007; 22(2): 586-93. https://dx.doi.org/10.1093/humrep/del388.
  52. Hickey D.K., Fahey J.V., Wira C.R. Mouse estrous cycle regulation of vaginal versus uterine cytokines, chemokines, α-/β-defensins and TLRs. Innate Immun. 2013; 19(2): 121-31. https://dx.doi.org/10.1177/1753425912454026.
  53. Hirata T., Osuga Y., Hamasaki K., Hirota Y., Nose E., Morimoto C. et al. Expression of toll-like receptors 2, 3, 4, and 9 genes in the human endometrium during the menstrual cycle. J. Reprod. Immunol. 2007; 74(1-2): 53-60. https://dx.doi.org/10.1016/j.jri.2006.11.004.
  54. Benjelloun F., Quillay H., Cannon C., Marlin M., Madec Y., Fernandez H. et al. Activation of Toll-like receptors differentially modulates inflammation in the human reproductive tract: preliminary findings. Front. Immunol. 2020; 11: 1655.
  55. Nasu K., Itoh H., Yuge A., Nishida M., Narahara H. Human oviductal epithelial cells express Toll-like receptor 3 and respond to double-stranded RNA: Fallopian tube-specific mucosal immunity against viral infection. Hum. Reprod. 2007; 22(2): 356-61. https://dx.doi.org/10.1093/humrep/del385.
  56. Herath S., Lily S.T., Santos N.R., Gilbert R.O., Goetze L., Bryant C.E. et al. Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reprod. Biol. Endocrinol. 2009; 7: 55. https://dx.doi.org/10.1186/1477-7827-7-55.
  57. Коган Е.А., Гомболевская Н.А., Демура Т.А., Марченко Л.А., Бурменская О.В., Файзуллина Н.М., Муравьева В.В. Роль toll-like рецепторов 2, 4, 9-го типов в патогенезе хронического эндометрита. Акушерство и гинекология. 2015; 12: 81-8. [Kogan E.A., Gombolevskaya N.A., Demura T.A., Marchenko L.A., Burmenskaya O.V., Faizullina N.M., Muravyeva V.V. Role of Toll-like receptors 2, 4, 9 in the endometrium in chronic endometritis. Obstetrics and Gynecology. 2015; 12: 81-8. (in Russian)].
  58. Ju J., Li L., Xie J., Wu Y., Wu X., Li W. Toll-like receptor-4 pathway is required for the pathogenesis of human chronic endometritis. Exp. Ther. Med. 2014; 8(6): 1896-900. https://dx.doi.org/10.3892/etm.2014.1990.
  59. Cherpes T.L., Weisenfeld H.C., Melan M.A., Kant J.A., Cosentino L.A., Meyn L.A., Hillier S.L. The associations between pelvic inflammatory disease, Trichomonas vaginalis infection, and positive herpes simplex virus type 2 serology. Sex. Transm. Dis. 2006; 33(12):747-52. https://dx.doi.org/10.1097/01.olq.0000218869.52753.c7.
  60. Clarke L.M., Duerr A., Yeung K.H.A., Brockman S., Barhosa C., Macasaet M. Recovery of cytomegalovirus and herpes simplex virus from upper and lower genital tract specimens obtained from women with pelvic inflammatory disease. J. Infect. Dis. 1997; 176(1): 286-8.
  61. Колмык В.А., Насыров Р.А., Кутушева Г.Ф. Сравнительный анализ иммуногистохимического и хромато-масс-спектрометрического исследований в диагностике этиологического фактора хронического эндометрита. Медицина: теория и практика. 2019; 4(Приложение): 267-8. [Kolmyk V.A., Nasyrov R.A., Kutusheva G.F. Comparative analysis of immunohistochemical and chromato-mass-spectrometric studies in the diagnosis of the etiological disease of chronic endometritis. Medicine: Theory and Practice. 2019; 4 (S): 267-8. (in Russian)].
  62. Мальцева Л.И., Шарипова Р.И., Цыплаков Д.Э., Железова М.Е. Морфофункциональное состояние эндометрия у женщин с бактериально-вирусным эндометритом. Практическая медицина. 2017; 7: 87-91. [Maltseva L.I., Sharipova R.I., Tsyplakov D.E., Zhelezova M.E. Morphological and functional state of endometrium in women with viral-bacterial endometritis. Practical Medicine. 2017; 7(108): 87-91. (in Russian)].
  63. Доброхотова Ю.Э., Ганковская Л.В., Боровкова Е.И., Нугуманова О.Р. Экзогенная цитокинотерапия в лечении пациенток с хроническим эндометритом. Акушерство и гинекология. 2021; 2: 119-26. [Dobrokhotova Yu.E., Gankovskay L.V., Borovkova E.I., Nugumanova O.R. Exogenous cytokine therapy in the treatment of patients with chronic endometritis. Obstetrics and Gynecology. 2021; 2: 119-6. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.2.119-126.
  64. Шарифулин Э.М., Игумнов И.А., Круско О.В., Аталян А.В., Сутурина Л.В. Особенности хронического эндометрита у женщин репродуктивного возраста с синдромом поликистозных яичников. Acta Biomedica Scientifica. 2020; 5(6): 27-36. [Sharifulin E.M., Igumnov I.A., Krusko O.V., Atalyan A.V., Suturina L.V. Features of chronic endometritis in women of reproductive age with polycystic ovary syndrome. Acta Biomed. Sci. 2021; 5(6): 27-36. (in Russian)]. https://dx.doi.org/10.29413/ABS.2020-5.6.3.
  65. Atalyan A., Suturina L., Nadeliaeva I., Lazareva L., Shariflin E., Danusevich I. Prevalence of uterine fibroids in women in eastern siberia: A cross-sectional study. Int. J. Biomed. 2021; 11(4): 515-8.
  66. Колесникова Л.И., Данусевич И.Н., Курашова Н.А., Сутурина Л.В., Гребенкина Л.А., Долгих М.И. Особенности перекисного окисления липидов и антиоксидантной защиты у женщин с хроническими репродуктивными нарушениями. Фундаментальные исследования. 2013; 9(5): 829-32. [Kolesnikova L.I., Danusevich I.N., Kurashova N.A., Suturina L.V., Grebenkina L.A., Dolgikh M.I. Features of lipid peroxidation and antioxidant protection in women with chronic endometritis end reproductive disorders. Fundamental research. 2013; 9(5): 829-32. (in Russian)].

Received 21.03.2022

Accepted 20.05.2022

About the Authors

Kseniia D. Ievleva, Junior Researcher at the Laboratory of Gynecological Endocrinology, Scientific Center of Family Health and Human Reproduction Problems,
+7(983)403-93-50, asiy91@mail.ru, 664003, Russia, Irkutsk, Timiryzev str., 16.
Irina N. Danusevich, Dr. Med. Sci., Head of the Laboratory of Gynecological Endocrinology, Scientific Center of Family Health and Human Reproduction Problems, +7(3952)20-76-36, 664003, Russia, Irkutsk, Timiryzev str., 16.
Larisa V. Suturina, Dr. Med. Sci., Professor, Head of the Department of Reproductive Health Care, +7(3952)20-76-36, 664003, Russia, Irkutsk, Timiryzev str., 16.

Authors' contributions: Ievleva K.D. – search for literary sources, writing the text of the article; Danusevich I.N. – formulation of the ideas and concepts of the review of literature, editing the text of the article; Suturina L.V. – editing the text of the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The review of literature has been written within the framework of State Budget Topic No. 0416-2021-0002 “Pathophysiological mechanisms and genetic and metabolic predictors for maintaining reproductive health and longevity in different age, gender, and ethnic groups”.
For citation: Ievleva K.D., Danusevich I.N., Suturina L.V.
Features of interaction of Toll-like receptors with virus infection
of the reproductive tract as a predictor of chronic endometritis.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 6: 5-12 (in Russian)
https://dx.doi.org/10.18565/aig.2022.6.5-12

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.