Gene expression features in patients with genital prolapse
Cheremin M.M., Smolnova T.Yu., Krasnyi A.M., Chuprynin V.D.
Genital prolapse is a serious problem affecting the female population due to its high prevalence and absence of prerequisites to the decrease in its rate at the moment. Since the genetic aspect is critically important for understanding the pathogenesis of genital prolapse, the databases and services, namely PubMed, Google Scholar, and eLibrary have been searched for the findings on the features of the gene expression of connective tissue components in patients with genital prolapse, as well as epigenomic influence and interactions of extracellular matrix components. The development of genital prolapse can be influenced by the following factors: mRNA expression of collagen and elastic fibers, homeostasis of these fibers among the components of the interstitial substance, and the state of the interstitial substance itself (decorin (DCN), biglycan (BGN), fibromodulin (FMO) and lumican (LUM)), as well as modeling, degradation and remodeling of other components of the extracellular matrix. The review also highlights the important role of the smooth muscle component and the effect of the expression level of a number of genes on its functionality.
Conclusion: The review identified a wide range of links in molecular genetic and biochemical processes and their changes which can result in genital prolapse. However, most of these processes are not specific; therefore, in the future it is necessary to continue the search for molecular genetic causes that play a role in the pathogenesis of genital prolapse.
Authors’ contributions: Cheremin M.M. – collection of literary sources, analysis of literary data, writing the article;
Smolnova T.Yu. – analysis of the Russian and foreign literature, editing the text; Krasnyi A.M. – analysis of foreign literature, editing the text; Chuprynin V.D. – editing the text.
Conflicts of interest: The authors declare no conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Cheremin M.M., Smolnova T.Yu., Krasnyi A.M., Chuprynin V.D. Gene expression features in patients with genital prolapse.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (3): 50-56 (in Russian)
https://dx.doi.org/10.18565/aig.2024.17
Keywords
References
- Barber M.D., Maher C. Epidemiology and outcome assessment of pelvic organ prolapse. Int. Urogynecol. J. 2013; 24(11): 1783-90. https://dx.doi.org/10.1007/s00192-013-2169-9.
- Palos C.C., Timm B.F., de Souza Paulo D., Fernandes C.E., de Souto R.P., Oliveira E. Evaluation of COLIA1-1997 G/T polymorphism as a related factor to genital prolapse. Int. Urogynecol. J. 2020; 31(1): 133-7. https://dx.doi.org/10.1007/s00192-018-3833-x.
- Cattani L., Decoene J., Page A.S., Weeg N., Deprest J., Dietz H.P. Pregnancy, labour and delivery as risk factors for pelvic organ prolapse: a systematic review. Int. Urogynecol. J. 2021; 32(7): 1623-31. https://dx.doi.org/10.1007/s00192-021-04724-y.
- Смольнова Т.Ю. Пролапс гениталий и дисплазия соединительной ткани. Клиническая и экспериментальная хирургия. Журнал им. акад. Б.В. Петровского. 2015; 2: 53-64. [Smolnova T.Yu. Women’s genital prolapse and connective tissue disease. Clinical and Experimental Surgery. Petrovsky J. 2015; (2): 53-64. (in Russian)].
- Li L., Sun Z., Chen J., Zhang Y., Shi H., Zhu L. Genetic polymorphisms in collagen-related genes are associated with pelvic organ prolapse. Menopause. 2020; 27(2): 223-9. https://dx.doi.org/10.1097/GME.0000000000001448.
- Batista N.C., Bortolini M.A.T., Silva R.S.P., Teixeira J.B., Melo N.C., Santos R.G.M. et al. et al. Collagen I and collagen III polymorphisms in women with pelvic organ prolapse. Neurourol. Urodyn. 2020; 39(7): 1977-84. https://dx.doi.org/10.1002/nau.24447.
- Мартынов А.И., Нечаева Г.И. Клинические рекомендации Российского научного медицинского общества терапевтов по диагностике, лечению и реабилитации пациентов с дисплазиями соединительной ткани (первый пересмотр). Медицинский вестник Северного Кавказа. 2018; 13(1.2): 137-209. [Martynov A.I., Nechaeva G.I. Guidelines of the Russian Scientific Medical Society of Internal Medicine on the diagnosis, treatment and rehabilitation of patients with the connective tissue dysplasia (First edition). Medical News of the North Caucasus. 2018; 13(1.2): 137-209. (in Russian)]. https://dx.doi.org/10.14300/mnnc.2018.13037.
- Нечаева Г.И., Викторова И.А. Дисплазия соединительной ткани: терминология, диагностика, тактика ведения пациентов. Омск: БЛАНКОМ; 2007. 188 c. [Nechaeva G.I., Viktorova I.A. Connective tissue dysplasia: terminology, diagnosis, patient management tactics. Omsk: BLANCOM; 2007. 188 p. (in Russian)].
- Недифференцированные дисплазии соединительной ткани (проект клинических рекомендаций). Терапия. 2019; 7: 9-42. [Undifferentiated connective tissue dysplasia (the project of guidelines). Therapy. 2019; 7: 9-42. (in Russian)]. https://dx.doi.org/10.18565/therapy.2019.7.9-42.
- Смольнова Т.Ю., Буянова С.Н., Савельев С.В., Титченко Л.И., Гришин В.Л., Яковлева Н.И. Фенотипический симптомокомплекс дисплазии соединительной ткани у женщин. Клиническая медицина. 2003; 81(8): 42-7. [Smolnova T.Yu., Buyanova S.N., Savelyev S.V., Titchenko L.I., Grishin V.L., Yakovleva N.I. The phenotypical symptom complex of connective tissue dysplasia in females. Clinical Medicine. 2003; 81(8): 42-7. (in Russian)].
- Смольнова Т.Ю. Особенности гемодинамики и ее связь с некоторыми клиническими проявлениями у женщин при дисплазии соединительной ткани. Клиническая медицина. 2013; 91(10): 43-8. [Smolnova T.Yu. Features hemodynamics and its relationship with some clinical manifestations in women with connective tissue dysplasia. Clinical Medicine. 2013; 91(10): 43-8. (in Russian)].
- Смольнова Т.Ю., Адамян Л.В. Клинико-патогенетические аспекты опущения и выпадения внутренних половых органов при недифференцированных формах дисплазии соединительной ткани. Кубанский научный медицинский вестник. 2009; 6: 69-73. [Smolnova T.Yu., Adamyan L.V. Clinico-pathogenetic respectives of genital prolapse in patients with nondifferencial connective tissue disease. Kuban Scientific Medical Bulletin. 2009; 6: 69-73. (in Russian)].
- Zhao Z., Han W., Huang G., He Y., Zuo X., Hong L. Increased extracellular matrix stiffness regulates myofibroblast transformation through induction of autophagy-mediated Kindlin-2 cytoplasmic translocation. Exp. Cell. Res. 2024; 10: 113974. https://dx.doi.org/10.1016/j.yexcr.2024.113974.
- Lammers K., Lince S.L., Spath M.A., van Kempen L.C., Hendriks J.C., Vierhout M.E., Kluivers K.B. Pelvic organ prolapse and collagen-associated disorders. Int. Urogynecol. J. 2012; 23(3):313-9. https://dx.doi.org/10.1007/s00192-011-1532-y.
- Goh J.T. Biomechanical and biochemical assessments for pelvic organ prolapse. Curr. Opin. Obstet. Gynecol. 2003;15(5):p 391-94. https://dx.doi.org/10.1097/00001703-200310000-00007.
- Budatha M., Roshanravan S., Zheng Q., Weislander C., Chapman S.L., Davis E.C. et al. Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans. J. Clin. Invest. 2011; 121: 2048-59.
- Wang S., Lü D., Zhang Z., Jia X., Yang L. Effects of mechanical stretching on the morphology of extracellular polymers and the mRNA expression of collagens and small leucine-rich repeat proteoglycans in vaginal fibroblasts from women with pelvic organ prolapse. PLoS One. 2018; 13(4): e0193456. https://dx.doi.org/10.1371/journal.pone.0193456.
- Zhu Y.P., Xie T., Guo T., Sun Z.J., Zhu L., Lang J.H. Evaluation of extracellular matrix protein expression and apoptosis in the uterosacral ligaments of patients with or without pelvic organ prolapse. Int. Urogynecol. J. 2021; 32(8): 2273-81. https://dx.doi.org/10.1007/s00192-020-04446-7.
- Han L., Wang L., Wang Q., Li H., Zang H. Association between pelvic organ prolapse and stress urinary incontinence with collagen. Exp. Ther. Med. 2014; 7(5): 1337-41. https://dx.doi.org/10.3892/etm.2014.1563.
- Gabriel B., Denschlag D., Göbel H., Fittkow C., Werner M., Gitsch G., Watermann D. Uterosacral ligament in postmenopausal women with or without pelvic organ prolapse. Int. Urogynecol, J. Pelvic. Floor. Dysfunct. J. 2005; 16(6); 475-9. https://dx.doi.org/10.1007/s00192-005-1294-5.
- Niu K., Chen X., Lu Y. COL3A1 rs1800255 polymorphism is associated with pelvic organ prolapse susceptibility in Caucasian individuals: Evidence from a meta-analysis. PLOS One. 2021; 6(4): e0250943. https://dx.doi.org/10.1371/journal.pone.0250943.
- Hu Y., Wu R., Li H., Gu Y., Wei W. Expression and significance of metalloproteinase and collagen in vaginal wall tissues of patients with pelvic organ prolapse. Ann. Clin. Lab. Sci. 2017; 47(6): 698-705.
- Ra H.J., Parks W.C. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007; 26(8): 587-96. https://dx.doi.org/10.1016/j.matbio.2007.07.001.
- Wang X., Li Y., Chen J., Guo X., Guan H., Li C. Differential expression profiling of matrix metalloproteinases and tissue inhibitors of metalloproteinases in females with or without pelvic organ prolapse. Mol. Med. Rep. 2014; 10(4): 2004-8. https://dx.doi.org/10.3892/mmr.2014.2467.
- Borazjani A., Couri B.M., Kuang M., Balog B.M., Damaser M.S. Role of lysyl oxidase like 1 in regulation of postpartum connective tissue metabolism in the mouse vagina, Biol. Reprod. 2019; 101(5): 916-27. https://dx.doi.org/10.1093/biolre/ioz148.
- Zhu Y., Li L., Xie T., Guo T., Zhu L., Sun Z. Mechanical stress influences the morphology and function of human uterosacral ligament fibroblasts and activates the p38 MAPK pathway. Int. Urogynecol. J. 2022; 33(8): 2203-12. https://dx.doi.org/10.1007/s00192-021-04850-7.
- Kagan H.M., Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell. Biochem. 2003; 88(4): 660-72. https://dx.doi.org/10.1002/jcb.10413.
- Clark-Patterson G.L., Roy S., Desrosiers L.., Knoepp L.R., Sen A., Miller K.S. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function. Sci. Rep. 2021; 11(1): 20956. https://dx.doi.org/10.1038/s41598-021-00351-1.
- Камоева С.В., Савченко Т.Н., Абаева Х.А., Демура Т.А., Иванова А.В. Роль матриксных белков Fbln-5 и LOXL-1 в патогенезе пролапса тазовых органов. Российский вестник акушера-гинеколога. 2013; 13(3): 33-7. [Kamoeva S.V., Savchenko T.N., Abaeva Kh.A., Demura T.A., Ivanova A.V. Role of the matrix proteins Fbln-5 and LOXL-1 in the pathogenesis of pelvic organ prolapse. Russian Bulletin of Obstetrician-Gynecologist. 2013; 13(3): 33 7. (in Russian)].
- Zhao B.H., Zhou J.H. Decreased expression of elastin, fibulin-5 and lysyl oxidase-like 1 in the uterosacral ligaments of postmenopausal women with pelvic organ prolapse. J. Obstet. Gynaecol. Res. 2012; 38(6): 925-31. https://dx.doi.org/10.1111/j.1447-0756.2011.01814.x.
- Liu X., Zhao Y., Gao J., Pawlyk B., Starcher B., Spencer J.A. et al. Elastic fiber homeostasis requires lysyl oxidase–like 1 protein. Nat. Genet. 2004; 36: 178-82. https://dx.doi.org/10.1038/ng1297.
- Good M.M., Montoya T.I., Shi H., Zhou J., Huang Y., Tang L. et al. Thermosensitive hydrogels deliver bioactive protein to the vaginal wall. PLoS One. 2017; 12: e0186268. https://dx.doi.org/10.1371/journal.pone.0186268.
- Bishop J., Schuksz, M., Esko J. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 2007; 446: 1030-7. https://dx.doi.org/10.1038/nature05817.
- Vlodavsky I., Ilan N., Naggi A., Casu B. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr. Pharm. Des. 2007; 13(20): 2057-73. https://dx.doi.org/10.2174/138161207781039742.
- Ben-Zvi M., Herman H.G., Schreiber L., Sagiv R., Bar J., Condrea A., Ginath S. Expression of Heparanase in uterosacral ligaments of women with or without uterine prolapse. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020; 244: 110-3. https://dx.doi.org/10.1016/j.ejogrb.2019.11.024.
- Zhang L., Dai F., Chen G., Wang Y., Liu S., Zhang L. et al. Molecular mechanism of extracellular matrix disorder in pelvic organ prolapses. Mol. Med. Rep. 2020; 22(6): 4611-48. 10.3892/mmr.2020.11564.Erratum in: Mol. Med. Rep. 20211; 23(1): 78. https://dx.doi.org/10.3892/mmr.2020.11721.
- Connell K.A., Guess M.K., Chen H., Andikyan V., Bercik R., Taylor H.S. HOXA11 is critical for development and maintenance of uterosacral ligaments and deficient in pelvic prolapse. J. Clin. Invest. 2008; 118: 1050-5.
- Leegant A., Zuckerwise L.C., Downing K., Brouwer-Visser J., Zhu C., Cossio M.J. et al. Transforming growth factor β1 and extracellular matrix protease expression in the uterosacral ligaments of patients with and without pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 2015; 21: 53-8.
- Ярмолинская М.И., Молотков А.С., Денисова В.М. Матриксные металлопротеиназы и ингибиторы: классификация, механизм действия. Журнал акушерства и женских болезней. 2012; 61(10): 113-25. [Yarmolinskaya M.I., Molotkov A.S., Denisova V.M. Matrix metalloproteinases and inhibitors: classification, mechanism of action. Journal of Obstetrics and Women's Diseases. 2012; 61(10): 113-25. (in Russian)].
- Dong Y., Zheng Q., Wang Z., Lin X., You Y., Wu S. et al. Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J. Hematol. Oncol. 2019; 12: 112. https://dx.doi.org/10.1186/s13045-019-0795-5.
- Ruiz-Zapata A.M., Heinz A., Kerkhof M.H., van de Westerlo-van Rijt C., Schmelzer C.E.H., Stoop R. et al. Extracellular matrix stiffness and composition regulate the myofibroblast differentiation of vaginal fibroblasts. Int. J. Mol. Sci. 2020; 21(13): 4762. https://dx.doi.org/10.3390/ijms21134762.
- Liu Z., Mo H., Liu R., Niu Y., Chen T., Xu Q. et al. Matrix stiffness modulates hepatic stellate cell activation into tumor-promoting myofibroblasts via E2F3-dependent signaling and regulates malignant progression. Cell Death Dis. 2021; 12: 1134. https://dx.doi.org/10.1038/s41419-021-04418-9.
- Pakshir P., Noskovicova N., Lodyga M., Son D.O., Schuster R., Goodwin A. et al. The myofibroblast at a glance. J. Cell Sci. 2020; 133(13): jcs227900. https://dx.doi.org/10.1242/jcs.227900.
- Zhao Z., Han W., Huang G., He Y., Zuo X., Ning M., Jiang N., Hong H. Increased extracellular matrix stiffness regulates myofibroblast transformation through induction of autophagy-mediated Kindlin-2 cytoplasmic translocation. Exp. Cell Res. 2024; 436(2): 113974. https://dx.doi.org/10.21203/rs.3.rs-3067260/v1.
- Hupfer A., Brichkina A., Koeniger A., Keber C., Denkert C., Pfefferle P. et al. Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proc. Natl. Acad. Sci. USA. 2021; 118(40): e2105367118. https://dx.doi.org/10.1073/pnas.2105367118.
- Li Y., Kong M., Wang J., Han P., Zhang N., Yang X. et al. Exercise-induced circulating exosomes potentially prevent pelvic organ prolapse in clinical practice via inhibition of smooth muscle apoptosis. Heliyon. 2022; 9(3): e12583. https://dx.doi.org/10.1016/j.heliyon.2022.e12583.
- Cмольнова Т.Ю., Красный А.М., Чупрынин В.Д., Волгина Н.Е., Никитцева О.В. Влияние уровня экспрессии α-1 субъединицы потенциал-зависимого кальциевого канала CaV1.2 в гладкомышечной ткани у пациенток с пролапсом гениталий. В кн.: Сухих Г.Т., Адамян Л.В., ред. Материалы XIII Международного конгресса по репродуктивной медицине. Москва, 21-24 января 2019 г. М.; 2019: 126-9. [Smolnova T.Yu., Krasnyi A.M., Chuprynin V.D., Volgina N.E., Nikitseva O.V. Influence of the expression level of the α-1 subunit of the voltage-dependent calcium channel CaV1.2 in smooth muscle tissue in patients with genital prolapse. In the collection: XIII International Congress on Reproductive Medicine. January 21-24, Мoscow. Moscow; 2019: 126-9. (in Russian)].
- Красный А.М., Озернюк Н.Д. Экспрессия генов, кодирующих субъединицы потенциал-зависимых Са2+-каналов L-типа в пролиферирующих и дифференцирующихся миобластах линии С2С12мыши. Известия Российской академии наук. Серия биологическая. 2011; 38 (3): 349-53. [Krasnyi A.M., Ozernyuk N.D. Expression of genes encoding the subunits of voltage-dependent CA2 + channels of the L-type in proliferating and differentiating myoblasts of the C2C12 line of the mouse. Bulletin of the Russian Academy of Sciences. Series Biology. 2011; 38(3): 349-53. (in Russian)].
- Feng Y., Fang Z., Liu B., Chen L., Zheng X. Estradiol increases the level of myocardial voltage-gated calcium channel α1C subunit (CACNA1C) in septic mice. Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018; 34(10): 914-8. (in Chinese).
- Смольнова Т.Ю., Нечаева Г.И., Логинова Е.Н. Роль снижения экспрессии гена CACNA1C в развитии некоторых состояний в практике врача. Клиническая медицина. 2020; 98(1): 13-9. [Smolnova T.Yu., Nechaevа G.I., Loginova E.N. The role of the pathology of CACNA1C gene expression in the development of certain conditions in the practice of a physician. Clinical Medicine. 2020; 98(1): 13-9. (in Russian)]. https://dx.doi.org/10.34651/0023-2149-2020-98-1-13-19.
Received 25.01.2024
Accepted 13.02.2024
About the Authors
Mikhail M. Cheremin, post-graduate student, Academician V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Academician Oparin str., 4, mkhrznt@gmail.com, https://orcid.org/0000-0002-8600-068XTatyana Yu. Smolnova, Dr. Med. Sci., Senior Researcher at the Department of General Surgery, Academician V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Academician Oparin str., 4, smoltat@list.ru, https://orcid.org/0000-0003-3543-651X
Alexey M. Krasnyi, PhD, Head of the Cytology Laboratory, Academician V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Academician Oparin str., 4, a_krasnyi@oparina4.ru, https://orcid.org/0000-0001-7883-2702
Vladimir D. Chuprynin, PhD, Head of the Department of Surgery, Academician V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 117997, Russia, Moscow, Academician Oparin str., 4, v_chuprynin@oparina4.ru, https://orcid.org/0009-0003-7856-2863