Evaluation of nicotinic acetylcholine receptor subunit expression levels for the improvement of diagnostic approaches and treatment in endometrial hyperplasia and cancer

Levakov S.A., Gvazava E.N., Gromova T.A., Petrosyan E.G., Mazur D.V., Rezekina A.I., Gondarenko E.A., Antipova N.V.

1) I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia; 2) Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia; 3) National Research University "Higher School of Economics", Moscow, Russia

Objective: To determine and compare the expression levels of genes encoding nicotinic acetylcholine receptors (nAChRs) in hyperplastic and oncological endometrial processes.
Materials and methods: The study included 120 women of reproductive age divided into groups according to histological examination results: endometrial hyperplasia (EH) (n=58), endometrioid adenocarcinoma of the endometrium (n=14), and those with unchanged endometrium (n=48). The expression levels of genes encoding nAChRs (α1, α2, α3, α4, α5, α6, α7, α9, α10, β1, β2, β3, and β4) were determined by real-time reverse transcription polymerase chain reaction using specific primers for the corresponding nAChRs.
Results: Among the patients in the first group, increased expression was observed for the α1, α4, β1, and β2 subunits, with the greatest diagnostic significance attributed to the α4 subunit of the nAChRs. In the endometrium of patients in the second group, gene expression was detected for the α1, α3, and α6 subunits, with the α3 subunit of the nAChRs showing the greatest diagnostic significance. In the third group, pronounced expression was noted for the α3, α5, α6, and α7 subunits of the nAChRs.
Conclusion: The observed expression of nAChRs in EH suggests their influence on the differentiation of unchanged endometrium, potentially leading to the development of EH. The expression of these subunits in endometrial adenocarcinoma indicates that they may serve as potential predictors of endometrial neotransformation.

Authors' contributions: Levakov S.A. – conception and design of the study; Gvazava E.N., Antipova N.V., Petrosyan E.G., Mazur D.V., Rezekina A.I. – material collection and processing; Gvazava E.N., Antipova N.V., Gonadrenko E.A., Rezekina A.I. – statistical analysis; Gromova T.A., Gvazava E.N. – drafting of the manuscript; Gromova T.A. – editing of the manuscript.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: There was no funding for this study.
Ethical Approval: The study was reviewed and approved by the Research Ethics Committee of the I.M. Sechenov First MSMU, Ministry of Health of Russia (Sechenov University).
Patient Consent for Publication: All patients provided informed consent for the publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available upon request from the corresponding author after approval from the principal investigator.
For citation: Levakov S.A., Gvazava E.N., Gromova T.A., Petrosyan E.G., Mazur D.V., Rezekina A.I., Gondarenko E.A., Antipova N.V. Evaluation of nicotinic acetylcholine receptor subunit expression levels for the improvement of diagnostic approaches and treatment in endometrial hyperplasia and cancer.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (12): 108-116 (in Russian)
https://dx.doi.org/10.18565/aig.2024.50

Keywords

endometrial hyperplasia
nicotinic acetylcholine receptor
endometrial cancer
reverse transcription
real-time polymerase chain reaction

References

  1. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Гиперплазия эндометрия. 2021. [Ministry of Health of the Russian Federation. Clinical guidelines. Endometrial hyperplasia. 2021.(in Russian)].
  2. Nees L.K., Heublein S., Steinmacher S., Juhasz-Böss I., Brucker S., Tempfer C.B. et al. Endometrial hyperplasia as a risk factor of endometrial cancer. Arch. Gynecol. Obstet. 2022; 306(2): 407-21. https://dx.doi.org/10.1007/s00404-021-06380-5.
  3. Chandra V., Kim J.J., Benbrook D.M., Dwivedi A., Rai R. Therapeutic options for management of endometrial hyperplasia. J. Gynecol. Oncol. 2016; 27(l): e8. https://dx.doi.org/10.3802/jgo.2016.27.e8.
  4. Kadirogullari P., Atalay C.R., Ozdemir O., Sari M.E. Prevalence of co-existing endometrial carcinoma in patients with preoperative diagnosis of endometrial hyperplasia. J. Clin. Diagn. Res. 2015; 9(10): 10-4. https://dx.doi.org/10.7860/JCDR/2015/12484.6618.
  5. Roh H.J., Yoon H.J., Jeong D.H., Lee T.H., Kwon B.S., Suh D.S. et al. Prognostic factors of oncologic outcomes after fertility-preservative management with progestin in early-stage of endometrial cancer. J. Res. Med. Sci. 2021; 26: 48. https://dx.doi.org/10.4103/jrms.jrms_103_20.
  6. Каприн А.Д., Старинский В.В., Шахзадова А.О., ред. Состояние онкологической помощи населению России в 2022 году. М.: МНИОИ им. П.А. Герцена, филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2022. 239 с. [Kaprin A.D., Starinsky V.V., Shakhzadova A.O., ed. The state of oncological care for the population of Russia in 2022. Moscow: P.A. Herzen MSROI, branch of the FSBI "NMRC of Radiology" of the Ministry of Health of Russia; 2022. 239 p. (in Russian)].
  7. Tzortzatos G., Andersson E., Soller M., Askmalm M.S., Zagoras T., Georgii-Hemming P. et al. The gynecological surveillance of women with Lynch syndrome in Sweden. Gynecol. Oncol. 2015; 138(3): 717-22. https://dx.doi.org/10.1016/j.ygyno.2015.07.016.
  8. van der Meer A.C., Hanna L.S. Development of endometrioid adenocarcinoma despite Levonorgestrel-releasing intrauterine system: a case report with discussion and review of the RCOG/BSGE Guideline on the Management of Endometrial Hyperplasia. Clin. Obes. 2017; 7(1): 54-7. https://dx.doi.org/10.1111/cob.12168.
  9. Brinton L.A., Trabert B., Anderson G.L., Falk R.T., Felix A.S., Fuhrman B.J. et al. Serum estrogens and estrogen metabolites and endometrial cancer risk among postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 2016; 25(7): 1081-9. https://dx.doi.org/10.1158/1055-9965.EPI-16-0225.
  10. Wu Y., Sun W., Liu H., Zhang D. Age at menopause and risk of developing endometrial cancer: a meta-analysis. Biomed. Res. Int. 2019; 2019: 8584130. https://dx.doi.org/10.1155/2019/8584130.
  11. Raglan O., Kalliala I., Markozannes G., Cividini S., Gunter M.J., Nautiyal J.et al. Risk factors for endometrial cancer: an umbrella review of the literature. Int. J. Cancer. 2019; 145(7): 1719-30. https://dx.doi.org/10.1002/ijc.31961.
  12. Kwon J.Y., Park K., Song J.M., Pyeon S.Y., Lee S.H., Chung Y.S. et al. Risk factors and prognosis of stroke in gynecologic cancer patients. Cancers (Basel). 2023; 15(19): 4895. https://dx.doi.org/10.3390/cancers15194895.
  13. Юренева С.В., Ермакова Е.И. Менопауза и климактерическое состояние женщины. Акушерство и гинекология. 2018; 7: 32-8. [Yureneva S.V., Ermakova E.I. Menopause and menopausal condition of a woman. Obstetrics and Gynecology. 2018; (7): 32-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.7.32-38.
  14. Шулепко М.А., Бычков М.Л., Кульбацкий Д.С., Люкманова Е.Н. Никотиновые ацетилхолиновые рецепторы человека. Часть II: не-нейрональная холинергическая система. Биоорганическая химия. 2019; 45(3): 227-37. [Shulepko M.A., Bychkov M.L., Kulbaczkii D.S., Lyukmanova E.N. Human nicotinic acetylcholine receptors. Part II: Non-neuronal cholinergic system. Russian Journal of Bioorganic Chemistry. 2019; 45(3): 227-37.(in Russian)]. https://dx.doi.org/10.1134/S0132342319020131.
  15. Khodabandeh Z., Valilo M., Velaei K., Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer. 2022; 29(5): 778-89. https://dx.doi.org/10.1007/s12282-022-01369-7.
  16. Li X., Tae H.S., Chu Y., Jiang T., Adams D.J., Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol. Ther. 2021; 222: 107792. https://dx.doi.org/10.1016/j.pharmthera.2020.107792.
  17. He Z., Xu Y., Rao Z., Zhang Z., Zhou J., Zhou T. et al. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine. Sci. Total Environ. 2024; 912: 169604. https://dx.doi.org/ 10.1016/j.scitotenv.2023.169604.
  18. Bele T., Turk T., Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. BBA. 2024; 1870(1): 166875. https://dx.doi.org/10.1016/j.bbadis.2023.166875.
  19. Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A. et al. Cancer statistics for the year 2020: An overview. Int. J. Cancer. 2021; 149(4): 778-89. https://dx.doi.org/10.1002/ijc.33588.
  20. Nieh S., Jao S.W., Yang C.Y., Lin Y.-S., Tseng Y.H., Liu C.L. et al. Regulation of tumor progression via the Snail-RKIP signaling pathway by nicotine exposure in head and neck squamous cell carcinoma. Head Neck. 2015; 37(12): 1712-21. https://dx.doi.org/10.1002/hed.23820.
  21. Jin T., Hao J., Fan D. Nicotine induces aberrant hypermethylation of tumor suppressor genes in pancreatic epithelial ductal cells. Biochem. Biophys. Res. Commun. 2018; 499(4): 934-40. https://dx.doi.org/10.1016/j.bbrc.2018.04.022.
  22. Medjber K., Freidja M.L., Grelet S., Lorenzato M., Maouche K., Nawrocki-Raby B. et al. Role of nicotinic acetylcholine receptors in cell proliferation and tumour invasion in broncho-pulmonary carcinomas. Lung Cancer. 2015; 87(3): 258-64. https://dx.doi.org/10.1016/j.lungcan.2015.01.001.
  23. Wang S., Hu Y. α7 nicotinic acetylcholine receptors in lung cancer. Oncol. Lett. 2018; 16(2): 1375-82. https://dx.doi.org/10.3892/ol.2018.8841.
  24. Schaal C., Chellappan S. Nicotine-mediated regulation of nicotinic acetylcholine receptors in non-small cell lung adenocarcinoma by E2F1 and STAT1 transcription factors. PloS One. 2016; 11(5): e0156451. https://dx.doi.org/10.1371/journal.pone.0156451.
  25. Huang L.C., Lin C.L., Qiu J.Z., Lin C.Y., Hsu K.W., Tam K.W. et al. Nicotinic acetylcholine receptor subtype alpha-9 mediates triple-negative breast cancers based on a spontaneous pulmonary metastasis mouse model. Front. Cell. Neurosci. 2017; 3(11): 336. https://dx.doi.org/10.3389/fncel.2017.00336.
  26. Fararjeh A.S., Tu S.H., Chen L.C., Cheng T.C., Liu Y.R., Chang H.L. et al. Long-term exposure to extremely low-dose of nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induce non-malignant breast epithelial cell transformation through activation of the a9-nicotinic acetylcholine receptor-mediated signaling pathway. Environ. Toxicol. 2019; 34(1): 73-82. https://dx.doi.org/10.1002/tox.22659.
  27. Afrashteh Nour M., Hajiasgharzadeh K., Kheradmand F., Asadzadeh Z., Bolandi N., Baradaran B. Nicotinic acetylcholine receptors in chemotherapeutic drugs resistance: аn emerging targeting candidate. Life Sci. 2021; 278: 119557. https://dx.doi.org/10.1016/j.lfs.2021.119557.

Received 16.09.2024

Accepted 05.12.2024

About the Authors

Sergey A. Levakov, Dr. Med. Sci., Professor, Head of the Department of Obstetrics and Gynecology, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8, bld. 2, +7(495)609-14-00, levakoff@yandex.ru,
https://orcid.org/0000-0002-4591-838X
Ekaterina N. Gvazava, PhD student at the Department of Obstetrics and Gynecology, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University,
Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8, bld. 2, +7(495)609-14-00, https://orcid.org/0000-0001-9062-5351
Tatyana A. Gromova, PhD, Teaching Assistant at the Department of Obstetrics and Gynecology, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow, Trubetskaya str., 8, bld. 2, tgromova928@yandex.ru, https://orcid.org/0000-0001-6104-9842
Ellina G. Petrosyan, Engineer-Researcher at the Laboratory of Membrane and Bioenergetic Systems, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry,
Russian Academy of Sciences, 117997, Russia, Moscow, Miklukho-Maklaya str., 16/10, +7(495)335-01-00.
Diana V. Mazur, Engineer-Researcher at the Laboratory of Membrane and Bioenergetic Systems, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry,
Russian Academy of Sciences, 117997, Russia, Moscow, Miklukho-Maklaya str., 16/10, +7(495)335-01-00, dianamazur@yahoo.com,
https://orcid.org/0009-0007-8655-9081
Anastasiya I. Rezekina, Engineer-Researcher at the Laboratory of Membrane and Bioenergetic Systems, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry,
Russian Academy of Sciences, 117997, Russia, Moscow, Miklukho-Maklaya str., 16/10, +7(495)335-01-00.
Elena A. Gondarenko, Engineer-Researcher at the Laboratory of Membrane and Bioenergetic Systems, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry,
Russian Academy of Sciences, 117997, Russia, Moscow, Miklukho-Maklaya str., 16/10, +7(495)335-01-00, gondarenkoea@gmail.com,
https://orcid.org/0009-0003-5148-1182
Nadezhda V. Antipova, PhD, Senior Researcher at the Laboratory of Membrane and Bioenergetic Systems, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry,
Russian Academy of Sciences, 117997, Russia, Moscow, Miklukho-Maklaya str., 16/10, +7(495)335-01-00; National Research University "Higher School of Economics",
101000, Russia, Moscow, Myasnitskaya str., 20, +7(495)771-32-32, https://orcid.org/0000-0002-5799-7767
Corresponding author: Tatyana A. Gromova, tgromova928@yandex.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.