Non-invasive testing of human preimplantation embryos in vitro as a way to predict the outcomes of in vitro fertilization programs

Valiakhmetova E.Z., Kulakova E.V., Skibina Yu.S., Gryaznov A.Yu., Sysoeva A.P., Makarova N.P., Kalinina E.A

1) Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia; 2) Research and Production Enterprise “Nanostructured Glass Technology" and International Research and Education Center “Structure-Mediated al Nanobiophotonics” Saratov, Russia
The data available in the current literature on non-invasive methods for diagnosing the quality of an embryo and its genetic status were systematically analyzed. The review includes data from foreign and Russian articles published in Pubmed on this topic over the past 3 years. The improvement in the outcome of the IVF program is determined by many factors, including the quality of an embryo. The expansion of knowledge in relation to its development and physiology largely due to various current data processing methods and technologies can determine not only the level of embryonic morphological development, but also to predict the potential for further development. The non-invasiveness, safety, and efficiency of the method are the main criteria for current diagnosis of the potential of the embryo. Numerous studies of the embryo culture medium meet these requirements and seem promising in the selection of high-quality embryos.
Conclusion. The study of the molecular composition of culture media for the embryo makes it possible to comprehensively consider its life cycle, to assess the relationship of cellular metabolism to deep regulatory mechanisms. The development of omix technologies could gain insights into the molecular profile of the embryo culture medium, by identifying and characterizing the biomarkers that are potentially important for the onset of pregnancy. Further improvement of methods for analyzing culture media, processing the data, and increasing the future scope of research can provide a new, non-invasive predictor for the quality of the embryo and its implantation potential.

Keywords

assisted reproductive technologies
culture medium
embryo quality
embryonic metabolic activity
non-invasive pre-implantation genetic testing
in vitro fertilization

References

  1. Armstrong S., Bhide P., Jordan V., Pacey A., Farquhar C. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2019; (5): CD011320. https://dx.doi.org/10.1002/14651858.CD011320.pub4.
  2. Сысоева А.П., Макарова Н.П., Калинина Е.А., Скибина Ю.С., Занишевская А.А., Янчук Н.О., Грязнов А.Ю. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020; 7: 28-36. https://dx.doi.org/10.18565/aig.2020.7.28-36. [Sysoeva A.P., Makarova N.P., Kalinina E.A., Skibina Yu.S., Zanishevskaya A.A., Yanchuk N.O., Gryaznov A.Yu. Improving the effectiveness of assisted reproductive technologies using artificial intelligence and machine learning at the embryological stage. Obstetrics and Gynecology. 2020; 7: 28-36. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.7.28-36.
  3. Зорина И.М., Смольникова В.Ю., Эльдаров Ч.М., Ярыгина С.А., Горшинова В.К., Макарова Н.П., Калинина Е.А., Бобров М.Ю. Анализ потребления глюкозы и глутамата в питательных средах как метод оценки качества эмбрионов человека пятых суток развития. Акушерство и гинекология. 2018; 5: 64-9. [Zorina I.M., Smolnikova V.Yu., Eldarov Ch.M., Yarygina S.A., Gorshinova V.K., Makarova N.P., Kalinina E.A., Bobrov M.Yu. Analysis of glucose and glutamate consumption in culture media as a method for assessing the quality of human embryos on their fifth day of development. Obstetrics and Gynecology. 2018; 5: 64-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.5.64-69.
  4. Драпкина Ю.С., Тимофеева А.В., Чаговец В.В., Макарова Н.П., Калинина Е.А. Прогнозирование результативности программ ВРТ по профилю экспрессии малых некодирующих РНК в культуральной среде эмбриона. Акушерство и гинекология. 2020; 4 (Приложение): 82-3. [Drapkina Yu.S., Timofeeva A.V., Chagovets V.V., Makarova N.P., Kalinina E.A. Predicting the effectiveness of ART programs based on the expression profile of small non-coding RNAs in the embryo culture medium. Obstetrics and Gynecology. 2020; 4 (Suppl): 82-3. (in Russian)].
  5. Hong B., Hao Y. The outcome of human mosaic aneuploid blastocysts after intrauterine transfer: A retrospective study. Medicine (Baltimore). 2020; 99(9): e18768. https://dx.doi.org/10.1097/MD.0000000000018768.
  6. Gleicher N., Orvieto R.J. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J. Ovarian Res. 2017; 10(1): 21. https://dx.doi.org/10.1186/s13048-017-0318-3.
  7. Rubio C., Rienzi L., Navarro-Sánchez L., Cimadomo D., García-Pascual C.M., Albricci L. et al. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil. Steril. 2019; 112(3): 510-9. https://dx.doi.org/10.1016/j.fertnstert.2019.04.038.
  8. Yeung Q.S.Y., Zhang Y.X., Chung J.P.W., Lui W.T., Kwok Y.K.Y., Gui B. et al. A prospective study of non-invasive preimplantation genetic testing for aneuploidies (NiPGT-A) using next-generation sequencing (NGS) on spent culture media (SCM). Assist. Reprod. Genet. 2019; 36(8): 1609-21. https://dx.doi.org/10.1007/s10815-019-01517-7.
  9. Jiao J., Shi B., Sagnelli M., Yang D., Yao Y., Li W. et al. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum. Reprod. 2019; 34(7): 1369-79. https://dx.doi.org/10.1093/humrep/dez075.
  10. Vagnini L.D., Petersen C.G., Renzi A., Dieamant F., Oliveira J.B.A., Oliani A.H. et al. Relationship between age and blastocyst chromosomal ploidy analyzed by noninvasive preimplantation genetic testing for aneuploidies (niPGT-A). JBRA Assist. Reprod. 2020; 24(4): 395-9. https://dx.doi.org/10.5935/1518-0557.20200061.
  11. Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A. et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2016; 105(1): 225-35. e1-3. https://dx.doi.org/10.1016/j.fertnstert.2015.09.014.
  12. Cecchino G.N., Garcia-Velasco J.A. Mitochondrial DNA copy number as a predictor of embryo viability. Fertil. Steril. 2019; 111(2): 205-11. https://dx.doi.org/10.1016/j.fertnstert.2018.11.021.
  13. Sanchez T., Zhang M., Needleman D., Seli E. Metabolic imaging via fluorescence lifetime imaging microscopy for egg and embryo assessment. Fertil. Steril. 2019; 111(2): 212-8. https://dx.doi.org/10.1016/j.fertnstert.2018.12.014.
  14. Тимофеева А.В., Калинина Е.А., Драпкина Ю.С., Чаговец В.В., Макарова Н.П., Сухих Г.Т. Оценка качества эмбриона по профилю экспрессии малых некодирующих РНК в культуральной среде эмбриона в программах ВРТ. Акушерство и гинекология. 2019; 6: 79-86. [Timofeeva A.V., Kalinina E.A., Drapkina Yu.S., Chagovets V.V., Makarova N.P., Sukhykh G.T. Embryo quality assessment by the expression profile of small non-coding RNA in an embryo culture medium in ART programs. Obstetrics and Gynecology. 2019; 6: 79-86. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.6.79-86
  15. Ni M., Xue Y., Ding J., Yang S., Zheng A., Pu Y. et al. Correlation between differential expression of microRNA and quality of embryos. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2020; 37(9): 938-41. https://dx.doi.org/10.3760/cma.j.cn511374-20190516-00244.
  16. Sánchez-Ribas I., Diaz-Gimeno P., Quiñonero A., Ojeda M., Larreategui Z., Ballesteros A., Domínguez F. NGS analysis of human embryo culture media reveals miRNAs of extra embryonic origin. Reprod. Sci. 2019 ; 26(2): 214-22. https://dx.doi.org/10.1177/1933719118766252
  17. Abu-Halima M., Khaizaran Z.A., Ayesh B.M., Fischer U., Khaizaran S.A., Al-Battah F. et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil. Steril. 2020; 113(5): 970-80. e2. https://dx.doi.org/10.1016/j.fertnstert.2019.12.028.
  18. Zhou W., Dimitriadis E. Secreted microRNA to predict embryo implantation outcome: from research to clinical diagnostic application. Front. Cell Dev. Biol. 2020; 8: 586510. https://dx.doi.org/10.3389/fcell.2020.586510.
  19. Драпкина Ю.С., Тимофеева А.В., Чаговец В.В., Кононихин А.С., Франкевич В.Е., Калинина Е.А. Применение омиксных технологий в решении проблем репродуктивной медицины. Акушерство и гинекология. 2018; 9: 24-32. [Drapkina Yu.S., Timofeeva A.V., Chagovets V.V., Kononikhin A.S., Frankevich V.E., Kalinina E.A. Use of omix technologies to solve the problems of reproductive medicine. Obstetrics and gynecology. 2018; 9: 24-32 (in Russian)]. https://dx.doi.org/10.18565/aig.2018.9.24-32.
  20. Rinschen M.M., Ivanisevic J., Giera M., Siuzdak G. Identification of bioactive metabolites using activity metabolomics: A review. Nat. Rev. Mol. Cell Biol. 2019; 20(6): 353-67. https://dx.doi.org/10.1038/s41580-019-0108-4.
  21. Зорина И.М., Эльдаров Ч.М., Ярыгина С.А., Макарова Н.П., Трофимов Д.Ю., Смольникова В.Ю., Калинина Е.А., Бобров М.Ю. Профилирование метаболитов в питательных средах пятидневных эмбрионов человека. Биомедицинская химия. 2017; 63(5): 385-91. [Zorina I.M., Eldarov Ch.M., Yarygina S.A., Makarova N.P., Trofimov D.Yu., Smolnikova V.Yu., Kalinina E.A., 

    Bobrov M.Yu. Metabolomic profiling in culture media of day-5 human embryos. Biomedical Chemistry. 2017; 63(5): 385-91. (in Russian)]. https://dx.doi.org/10.18097/PBMC20176305385.

  22. Ding J., Xu T., Tan X., Jin H., Shao J., Li H. Raman spectrum: A potential biomarker for embryo assessment during in vitro fertilization. Exp. Ther. Med. 2017; 13(5): 1789-92. https://dx.doi.org/10.3892/etm.2017.4160.
  23. Seli E., Botros L., Sakkas D., Burns D.H. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 2008; 90(6): 2183-9. https://dx.doi.org/10.1016/j.fertnstert.2008.07.1739.
  24. Katz-Jaffe M.G., Gardner D.K., Schoolcraft W.B. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability. Fertil. Steril. 2006; 85(1): 101-7. https://dx.doi.org/10.1016/j.fertnstert.2005.09.011.
  25. Abreu C.M., Thomas V., Knaggs P., Bunkheila A., Cruz A., Teixeira S.R. et al. Non-invasive molecular assessment of human embryo development and implantation potential. Biosens. Bioelectron. 2020; 157: 112144. https://dx.doi.org/10.1016/j.bios.2020.112144.
  26. Huang G., Zhou C., Wei C.J., Zhao S., Sun F., Zhou H. et al. Evaluation of in vitro fertilization outcomes using interleukin-8 in culturemedium of human preimplantation embryos. Fertil. Steril. 2017; 107(3): 649-56. https://dx.doi.org/10.1016/j.fertnstert.2016.11.031.
  27. Ferreira L.M.R., Meissner T.B., Tilburgs T., Strominger J.L. HLA-G: At the interface of maternal-fetal tolerance. Trends Immunol. 2017; 38(4): 272-86. https://dx.doi.org/10.1016/j.it.2017.01.009.
  28. Díaz R.R., Blanes Z.R., Sánchez V., González Pérez J., Bethencourt J.C.A. Embryo sHLA-G secretion is related to pregnancy rate. Zygote. 2019; 27(2): 78-81. https://dx.doi.org/1017/S0967199419000054.
  29. Niu Z., Wang L., Pang R.T.K., Guo Y., Yeung W.S.B., Yao Y. A meta-analysis of the impact of human leukocyte antigen-G on the outcomes of IVF/ICSI. Reprod. Biomed. Online. 2017; 34(6): 611-8. https://dx.doi.org/10.1016/j.rbmo.2017.03.002.
  30. Lindgren K.E., Gülen Yaldir F., Hreinsson J., Holte J., Kårehed K., Sundström-Poromaa I. et al. Differences in secretome in culture media when comparing blastocysts and arrested embryos using multiplex proximity assay. Med. Sci. 2018; 123(3): 143-52. https://dx.doi.org/10.1080/03009734.2018.1490830.
  31. Kaihola H., Yaldir F.G., Bohlin T., Samir R., Hreinsson J., Åkerud H. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts. PLoS One. 2019; 14(12): e0226419. https://dx.doi.org/10.1371/journal.pone.0226419.
  32. Castillo J., Jodar M., Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum. Reprod. Update. 2018; 24(5): 535-55. https://dx.doi.org/10.1093/humupd/dmy017.
  33. Rinschen M.M., Ivanisevic J., Giera M., Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019; 20(6): 353-67. https://dx.doi.org/10.1038/s41580-019-0108-4.
  34. Burmistrova N.A., Pidenko P.S., Pidenko S.A., Skibina Yu.S., Monakhova Yu.B. Simultaneous determination of proteins in microstructured optical fibers supported by chemometric tools. Anal. Bioanal. Chem. 2019; 411(27): 7055-9. https://dx.doi.org/10.1007/s00216-019-02085-6.
  35. Cordero E., Latka I., Matthäus C., Schie I., Popp J.J. In-vivo Raman spectroscopy: from basics to applications. Biomed. Opt. 2018; 23(7): 1-23. https://dx.doi.org/10.1117/1.JBO.23.7.071210
  36. Liang B., Gao Y., Xu J., Song Y., Xuan L., Shi T. et al. Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertil. Steril. 2019; 111(4): 753-62. e1. https://dx.doi.org/10.1016/j.fertnstert.2018.11.036.
  37. Baştu E., Parlatan U., Başar G., Yumru H., Bavili N., Sağ F. et al. Spectroscopic analysis of embryo culture media for predicting reproductive potential in patients undergoing in vitro fertilization. Turk. J. Obstet. Gynecol. 2017; 14(3): 145-50. https://dx.doi.org/10.4274/tjod.92604.
  38. Bingol K., Brüschweiler R. Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods. Curr. Opin. Biotechnol. 2017; 43: 17-24. https://dx.doi.org/10.1016/j.copbio.2016.07.006.
  39. Gulin A., Nadtochenko V., Solodina A., Pogorelova M., Panait A., Pogorelov A. A novel approach for 3D reconstruction of mice full-grown oocytes by time-of-flight secondary ion mass spectrometry. Anal. Bioanal. Chem. 2020; 412(2): 311-9. https://dx.doi.org/10.1007/s00216-019-02237-8.
  40. Gulin A., Nadtochenko V., Astafiev A., Pogorelova V., Rtimi S., Pogorelov A. Correlating microscopy techniques and ToF-SIMS analysis of fully grown mammalian oocytes. Analyst. 2016; 141(13): 4121-9. https://dx.doi.org/10.1039/c6an00665e.
  41. Iles R.K., Sharara F.I., Zmuidinaite R., Abdo G., Keshavarz .S, Butler S.A. Secretome profile selection of optimal IVF embryos by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Assist. Reprod. Genet. 2019; 36(6): 1153-60. https://dx.doi.org/10.1007/s10815-019-01444-7.
  42. Curchoe C.L., Bormann C.L. Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. J. Assist. Reprod. Genet. 2019; 36(4): 591-600. https://dx.doi.org/10.1007/s10815-019-01408-x.
  43. Kaufmann S.J., Eastaugh J.L., Snowden S., Smye S.W., Sharma V. The application of neural networks in predicting the outcome of in-vitro fertilization. Hum. Reprod. 1997; 12(7): 1454-7. https://dx.doi.org/10.1093/humrep/12.7.1454.
  44. Miyagi Y., Habara T., Hirata R., Hayashi N. Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reprod. Med. Biol. 2019; 18(2): 204-11. https://dx.doi.org/10.1002/rmb2.12267.
  45. Spicer R., Salek R.M., Moreno P., Cañueto D., Steinbeck C. Navigating freely-available software tools for metabolomics analysis. Metabolomics. 2017; 13(9): 106. https://dx.doi.org/10.1007/s11306-017-1242-7.
  46. Gessulat S., Schmidt T., Zolg D.P., Samaras P., Schnatbaum K., Zerweck J., Knaute T. et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat. Methods. 2019; 16(6): 509-18. https://dx.doi.org/10.1038/s41592-019-0426-7.

Received 18.12.2020

Accepted 29.04.2021

About the Authors

Elvira Z. Valiakhmetova, postgraduate student at the Department of Assisted Reproductive Technologies in the Treatment of Infertility, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation. E-mail: ibraeva1988@list.ru.
117997, Russia, Moscow, Ac. Oparina str., 4.
Elena V. Kulakova, PhD, Senior Researcher at the Department of Assisted Reproductive Technologies in the Treatment of Infertility, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation. E-mail: e_kulakova@oparina4.ru.
117997, Russia, Moscow, Ac. Oparina str., 4.
Julia S. Skibina, Ph.D. in physics and mathematics, Director of LLC SPE “Nanostructed Glass Technology” and Deputy Director of International Research and Education Center “Structural Nanobiophotonics”. E-mail: director@nano-glass.ru. 410033, Russia, Saratov, pr. 50 let Octyabrya, 101.
Aleksey Yu. Gryaznov, Researcher of LLC SPE “Nanostructed Glass Technology” and International Research and Education Center “Structural Nanobiophotonics”.
E-mail: director@nano-glass.ru. 410033, Russia, Saratov, pr. 50 let Octyabrya, 101.
Natalya P. Makarova, Dr. Bio. Sci., Leading Researcher at the Department of Assisted Reproductive Technologies in the Treatment of Infertility, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation. E-mail: np_makarova@oparina4.ru.
117997, Russia, Moscow, Ac. Oparina str., 4.
Anastasia P. Sysoeva, embryologist at the Department of Assisted Reproductive Technologies in the Treatment of Infertility, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation. E-mail: a_sysoeva@oparina4.ru.
117997, Russia, Moscow, Ac. Oparina str., 4.
Elena A. Kalinina, Dr. Med. Sci., Professor, Head of the Department of Assisted Reproductive Technologies in the Treatment of Infertility, Academician V.I. Kulakov
National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation. E-mail: e_kalinina@oparina4.ru.
117997, Russia, Moscow, Ac. Oparina str., 4

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.