Monozygotic twins discordant for multiple congenital anomalies
Bolshakova A.S., Yarygina T.A., Sakalo V.A., Gladkova K.A., Barkov I.Yu., Sadelov I.O., Khodzhaeva Z.S.
Relevance: The management of a monochorionic multiple pregnancy with abnormal development of one of the fetuses is a clinical and ethical dilemma, since, there is a risk of preterm birth and perinatal death of the second twin regardless of the chosen tactics. Modern molecular genetic methods assist in optimizing the management of pregnant women and newborns in such cases.
We present a case report on the management of multiple pregnancy: discordant monozygotic twins with multiple developmental anomalies.
Case report: A 40-year-old multigravida presented at 17 weeks gestation to the National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Moscow, to determine the tactics of managing monochorionic twins with large omphalocele and spinal deformity in one of the fetuses.
At the first stage of the examination, the patient underwent a separate amniocentesis; normal female molecular karyotype arr(1-22,X)x2 was detected in both fetuses. Impairments in methylation of IC1 (H19) and IC2 (KCNQ1OT1) sites of the critical region of chromosome 11 associated with Beckwith–Wiedemann syndrome were excluded on the basis of DNA of the amniotic fluid in both fetuses. Monozygosity was confirmed by matching samples of the first and second fetuses for five SNP markers on each of 22 pairs of autosomes. Given the normal result of the genetic examination of both fetuses and the potential risks of perinatal complications during intrauterine intervention, the patient refused selective fetocide.
An operative delivery was performed at 33 weeks and 5 days due to the repeated increase in polyhydramnios and zero diastolic blood flow in the umbilical cord arteries, according to the ultrasound Doppler assessment. The first healthy girl was born with a body weight of 2140 g, an Apgar score of 7-8 points, and was discharged home in satisfactory condition at the age of 12 days of life. The second girl with multiple developmental anomalies was born with a body weight of 1760 g, an Apgar score of 5-6 points, and died at the age of 2 days 2 hours due to multiple organ failure.
Both children had a normal female karyotype (46,XX) which was revealed postnatally, and a whole-exome sequencing of pathogenic and likely pathogenic variants associated with the phenotype was performed. Monozygosity of the twins was confirmed, no accidental findings were detected.
Conclusion: The above case demonstrates the principles of modern ante- and perinatal multidisciplinary tactics for multiple pregnancies discordant for structural fetal malformations.
Authors’ contributions: Khodzhaeva Z.S., Sakalo V.A., Bolshakova A.S., Yarygina T.A. – developing the concept of the study; Sakalo V.A., Gladkova K.A., Bolshakova A.S., Barkov I.Yu. – collecting and processing the material; Bolshakova A.S., Yarygina T.A., Sakalo V.A. – writing the text; Khodzhaeva Z.S., Sadelov I.A. – editing the text.
Conflicts of interest: Authors declare lack of the possible conflicts of interests.
Funding: The investigation has been supported by the Russian Foundation for Basic Research within the framework of Research Project № 121040600434-3.
Ethical Approval: The study was approved by the Ethical Review Board of the Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
Patient Consent for Publication: The patient signed an informed consent to have genetic studies during pregnancy, consent to the examination of children and the publication of this clinical observation.
For citation: Bolshakova A.S., Yarygina T.A., Sakalo V.A., Gladkova K.A., Barkov I.Yu., Sadelov I.O., Khodzhaeva Z.S. Monozygotic twins discordant for multiple congenital anomalies.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (12): 205-212 (in Russian)
https://dx.doi.org/10.18565/aig.2023.286
Keywords
References
- Monden C., Pison G., Smits J. Twin Peaks: more twinning in humans than ever before. Hum Reprod. 2021 May 17;36(6):1666-1673.https://dx.doi.org/10.1093/humrep/deab029.
- Benn P., Rebarber A. Non-invasive prenatal testing in the management of twin pregnancies. Prenat. Diagn. 2021; 41(10): 1233-40. https://dx.doi.org/10.1002/pd.5989.
- Hur Y.M. Changes in multiple birth rates and parental demographic factors in South Korea during the last four decades: 1981-2019. Twin Res. Hum. Genet. 2021; 24(3): 163-7. https://dx.doi.org/10.1017/thg.2021.23.
- Li N., Sun J., Wang J., Jian W., Lu J., Miao Y. et al. Selective termination of the fetus in multiple pregnancies using ultrasound-guided radiofrequency ablation. BMC Pregnancy Childbirth. 2021; 21(1): 821. https://dx.doi.org/10.1186/s12884-021-04285-4.
- Flenady V., Wojcieszek A.M., Middleton P., Ellwood D., Erwich J.J., Coory M. el al.; Lancet Ending Preventable Stillbirths study group; Lancet Stillbirths In High-Income Countries Investigator Group. Stillbirths: recall to action in high-income countries. Lancet. 2016; 387(10019): 691-702.https://dx.doi.org/10.1016/S0140-6736(15)01020-X.
- Bulmer M.G. Embryology, Human. Clarendon; 1970. 205 p.
- Hall J.G. Twinning. Lancet. 2003; 362(9385): 735-43.https://dx.doi.org/10.1016/S0140-6736(03)14237-7.
- Smits J., Monden C. Twinning across the developing world. PLoS One. 2011; 6(9): e25239. https://dx.doi.org/10.1371/journal.pone.0025239.
- Chen N., Li J., Li Y., Zhang Y., Li J., Gao J. et al. Risk factors associated with monozygotic twinning in offspring conceived by assisted reproductive technology. Hum. Reprod. Open. 2023; 2023(4): hoad035.https://dx.doi.org/10.1093/hropen/hoad035.
- Cheong-See F., Schuit E., Arroyo-Manzano D., Khalil A., Barrett J., Joseph K.S. et al.; Global Obstetrics Network (GONet) Collaboration. Prospective risk of stillbirth and neonatal complications in twin pregnancies: systematic review and meta-analysis. BMJ. 2016; 354: i4353. https://dx.doi.org/10.1136/bmj.i4353.
- Peters H.E., König T.E., Verhoeven M.O., Schats R., Mijatovic V., Ket J.C., Lambalk C.B. Unusual twinning resulting in chimerism: a systematic review on monochorionic dizygotic twins. Twin Res. Hum. Genet. 2017; 20(2): 161-8. https://dx.doi.org/10.1017/thg.2017.4.
- Trombetta G., Fabbro D., Demori E., Driul L., Damante G., Xodo S. Rare spontaneous monochorionic dizygotic twins: a case report and a systematic review. BMC Pregnancy Childbirth. 2022; 22(1): 564.https://dx.doi.org/10.1186/s12884-022-04866-x.
- Semrl N., Barth M., Feigl S., Hochstätter R., Oreskovic I., Fluhr H. et al. Birth of monozygotic dichorionic twins after a single blastocyst embryo transfer: a case report of genetic determination of zygosity. F S Rep. 2023; 4(2): 231-4.https://dx.doi.org/10.1016/j.xfre.2023.03.002.
- Khalil A., Rodgers M., Baschat A., Bhide A., Gratacos E., Hecher K. et al. ISUOG Practice Guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet. Gynecol. 2016; 47(2): 247-63. https://dx.doi.org/10.1002/uog.15821.
- Blumenfeld Y.J., Momirova V., Rouse D.J., Caritis S.N., Sciscione A., Peaceman A.M. et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Accuracy of sonographic chorionicity classification in twin gestations. J. Ultrasound. Med. 2014; 33(12): 2187-92. https://dx.doi.org/10.7863/ultra.33.12.2187.
- Wojas A., Martin K.A., Koyen Malashevich A., Hashimoto K., Parmar S., White R. et al. Clinician-reported chorionicity and zygosity assignment using single-nucleotide polymorphism-based cell-free DNA: Lessons learned from 55,344 twin pregnancies. Prenat. Diagn. 2022; 42(10): 1235-41.https://dx.doi.org/10.1002/pd.6218.
- Baud D., Windrim R., Van Mieghem T., Keunen J., Seaward G., Ryan G. Twin-twin transfusion syndrome: a frequently missed diagnosis with important consequences. Ultrasound Obstet. Gynecol. 2014; 44(2): 205-9.https://dx.doi.org/10.1002/uog.13328.
- Wang Y., Qiu X., Chen S., Pan D., Hua R., Li S. et al. Noninvasive evaluation of fetal zygosity in twin pregnancies involving a binary analysis of single-nucleotide polymorphisms. J. Mol. Diagn. 2023; 25(9): 682-91.https://dx.doi.org/10.1016/j.jmoldx.2023.06.003.
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet. Gynecol. 2020; 136(4): e48-e69.https://dx.doi.org/10.1097/AOG.0000000000004084.
- Sebghati M., Khalil A. Reduction of multiple pregnancy: Counselling and techniques. Best Pract. Res. Clin. Obstet. Gynaecol. 2021; 70: 112-22.doi: 10.1016/j.bpobgyn.2020.06.013.
- Weber E.C., Strizek B., Recker F., Geipel A., Gembruch U., Berg C., Gottschalk I. Outcome of monochorionic pregnancies after selective feticide with bipolar cord coagulation: a German single center experience. J. Clin. Med. 2022; 11(6): 1516. doi: 10.3390/jcm11061516.
- Gul A., Cebeci A., Aslan H., Polat I., Sozen I., Ceylan Y. Perinatal outcomes of twin pregnancies discordant for major fetal anomalies. Fetal Diagn. Ther. 2005; 20(4): 244-8. https://dx.doi.org/10.1159/000085078.
- Cao A., Monni G. Phenotypic and genotypic discordance in monozygotic twins. In: Blickstein I., Keith L.G., eds. Multiple pregnancy: epidemiology, gestation and perinatal outcome: Taylor & Francis; 2005: 226-32.
- Rydzanicz M., Olszewski P., Kedra D., Davies H., Filipowicz N., Bruhn-Olszewska B. et al. Variable degree of mosaicism for tetrasomy 18p in phenotypically discordant monozygotic twins-diagnostic implications. Mol. Genet. Genomic. Med. 2021; 9(1): e1526. https://dx.doi.org/10.1002/mgg3.1526.
- Machin G. Non-identical monozygotic twins, intermediate twin types, zygosity testing, and the non-random nature of monozygotic twinning: a review. Am. J. Med. Genet. C. Semin. Med. Genet. 2009; 151C(2): 110-27.https://dx.doi.org/10.1002/ajmg.c.30212.
- Silva S., Martins Y., Matias A., Blickstein I. Why are monozygotic twins different? J. Perinat. Med. 2011; 39(2):195-202. doi: 10.1515/jpm.2010.140.
- Riggs E.R., Andersen E.F., Cherry A.M., Kantarci S., Kearney H., Patel A. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020; 22(2): 245-57. https://dx.doi.org/10.1038/s41436-019-0686-8.
- Faucett W.A., Savage M. Chromosomal microarray testing. JAAPA. 2012; 25(1): 65-6. https://dx.doi.org/10.1097/01720610-201201000-00016.
- Riggs E.R., Wain K.E., Riethmaier D., Smith-Packard B., Faucett W.A., Hoppman N. et al. Chromosomal microarray impacts clinical management. Clin. Genet. 2014; 85(2): 147-53. https://dx.doi.org/10.1111/cge.12107.
- Miller D.T., Adam M.P., Aradhya S., Biesecker L.G., Brothman A.R., Carter N.P. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010; 86(5): 749-64.https://dx.doi.org/10.1016/j.ajhg.2010.04.006.
- Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J.,Grody W.W. et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet. Med. 2015; 17(5): 405-24.https://dx.doi.org/10.1038/gim.2015.30
- Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019; 18(2): 3-23. [Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Rebrikov D.V., Savostianov K.V., Glotov A.S., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Guidance on Interpretation of Human DNA Sequence Data Obtained by Mass Parallel Sequencing (MPS) (Revision 2018 Version 2). Medical Genetics. 2019; 18(2): 3-23. (in Russian)].https://dx.doi.org/10.25557/2073-7998.2019.02.3-23.
- South S.T., Lee C., Lamb A.N., Higgins A.W., Kearney H.M.; Working Group for the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet. Med. 2013; 15(11): 901-9. https://dx.doi.org/10.1038/gim.2013.129.
- Ребриков Д.В., Коростин Д.О., Шубина Е.С., Ильинский В.В. NGS: высокопроизводительное секвенирование. М.: «Издательство "БИНОМ. Лаборатория знаний"»; 2014. 232 с. [Rebrikov D.V., Korostin D.O.,Shubina E.S., Ilyinsky V.V. NGS: high-throughput sequencing. M.: "Publishing House" BINOM. Knowledge Laboratory"; 2014. 232 p. (in Russian)].
- Mone F., Quinlan-Jones E., Ewer A.K., Kilby M.D. Exome sequencing in the assessment of congenital malformations in the fetus and neonate. Arch. Dis. Child Fetal Neonatal. Ed. 2019; 104(4): F452-F456.https://dx.doi.org/10.1136/archdischild-2018-316352.
- Lord J., McMullan D.J., Eberhardt R.Y., Rinck G., Hamilton S.J., Quinlan-Jones E. et al Prenatal Assessment of Genomes and Exomes Consortium. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet. 2019; 393(10173): 747-57. https://dx.doi.org/10.1016/S0140-6736(18)31940-8.
- Rieder W., Maurer S.V., Giannoni E., Baud D. Fetal omphalocele: review of predictive factors important for antenatal counseling? Obstet. Gynecol. Surv. 2022; 77(11): 683-95. doi: 10.1097/OGX.0000000000001073.
- Министерство здравоохранения Российской Федерации. Клинические рекомендации «Многоплодная беременность». 2021. [Ministry of Health of the Russian Federation. Clinucal Guidelines “Multiple Pregnancy”. 2021.(in Russian)].
- Костюков К.В., Гладкова К.А. Диагностика фето-фетального трансфузионного синдрома, синдрома анемии-полицитемии при монохориальной многоплодной беременности. Акушерство и гинекология. 2016; 1: 10-5. [Kostyukov K.V., Gladkova K.A. Diagnosis of twin-to-twin transfusion syndrome and anemia-polycythemia syndrome in monochorionic multiple pregnancy. Obstetrics and Gynecology. 2016; (1): 10-5. (in Russian)].https://dx.doi.org/10.18565/aig.2016.1.10-15.
- Приказ Министерства здравоохранения Российской Федерации от 20 октября 2020 г. №1130н «Об утверждении Порядка оказания медицинской помощи по профилю «акушерство и гинекология». Приложение 9. Зарегистрировано в Минюсте России 12 ноября 2020 г. №60869. [Order of the Ministry of Health of the Russian Federation of October 20, 2020 No. 1130n "On Approval of the Procedure for the Provision of Medical Care in the Profile of Obstetrics and Gynecology." Appendix 9. Registered with the Ministry of Justice of Russia on November 12, 2020 No. 60869. (in Russian)].
- Nishie E.N., Osmundo Junior G.S., Mohamed S.H.M., Tannuri A.C.A., Gibelli M.A.B.C., Carvalho W.B. et al. Three-dimensional ultrasound evaluation of lung volume in fetuses with abdominal wall defect. Fetal. Diagn. Ther. 2023; 50(4): 259-68. https://dx.doi.org/10.1159/000531594.
- Mu W., He M., Lei T., Zhang L., Du L., Xie H. Measurement of the Cobb angle by 3D ultrasound: a valuable additional method for the prenatal evaluation of congenital scoliosis. Quant. Imaging Med. Surg. 2022; 12(5): 2805-12.https://dx.doi.org/10.21037/qims-21-558.
- United Healthcare Medical Policy. Chromosome microarray testing. 10/1/2015. Available at:https://www.unitedhealthcareonline.com/ccmcontent/Providerll/UHC/en-US/ Assets/ProviderStaticFiles/ProviderStaticFilesPdf/Toolsand Resources/PoliciesandProtocols/MedicalPolicies/MedicalPolicies/Chromosome_Microarray_Testing.pdf. Accessed June 26, 2016.
- Ng D., Bouhlal Y., Ursell P.C., Shieh J.T. Monoamniotic monochorionic twins discordant for noncompaction cardiomyopathy. Am. J. Med. Genet. A. 2013; 161A(6): 1339-44. https://dx.doi.org/10.1002/ajmg.a.35925.
- Ng Z.Y., Sau P.Y., Lim G.J. Discordant type I preaxial polydactyly in monozygotic twins on the same hand: a case report. Ann. Plast Surg. 2015; 75(4): 398-400. https://dx.doi.org/10.1097/SAP.0000000000000336.
- Stanek J. Placental fetal vascular malperfusion in congenital diaphragmatic hernia. Virchows Arch. 2023 Jul 13. https://dx.doi.org/10.1007/s00428-023-03600-y.
Received 08.12.2022
Accepted 11.12.2022
About the Authors
Anna S. Bolshakova, geneticist of the Department of Clinical Genetics, Institute of Reproductive Genetics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(909)982-27-99, a_bolshakova@oparina4.ru, https://orcid.org/0000-0002-7508-0899,117997, Russia, Moscow, Ac. Oparin str., 4.
Tamara A. Yarygina, MD, PhD, specialist of ultrasound diagnostics, researcher, Perinatal Cardiology Center, A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, 121552, Russia, Moscow, Roublyevskoe Shosse, 135, +7(495)414-78-75; Associate Professor of the Department of Ultrasound Diagnostics of the Faculty of Continuing Medical Education of the Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba, 127015, Russia, Moscow, Pistsovaya str., 10, tamarayarygina@gmail.com, https://orcid.org/0000-0001-6140-1930
Viktoriya A. Sakalo, MD, PhD, junior researcher of the Department of Pregnancy Pathology, Institute of Obstetrics, doctor of the 1st Obstetric Department of Pregnancy Pathology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(929)588-72-08,
v_sakalo@oparina4.ru, https://orcid.org/0000-0002-5870-4655, 117997, Russia, Moscow, 117997, Russia, Moscow, Ac. Oparin str., 4.
Kristina A. Gladkova, MD, PhD, senior researcher of the Fetal Medicine Unit, Institute of Obstetrics, Head of the 1st Obstetric Department of Pregnancy Pathology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(916)321-10-07,
k_gladkova@oparina4.ru, https://orcid.org/0000-0001-8131-4682, 117997, Russia, Moscow, Ac. Oparin str., 4.
Ilya Yu. Barkov, MD, PhD, Head of the Laboratory of Prenatal DNA Screening, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-24-10, i_barkov@oparina4.ru, 117997, Russia, Moscow, Ac. Oparin str., 4.
Igor O. Sadelov, MD, geneticist, Laboratory of Genomic Data Analysis, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-24-10, a_sadelov@oparina4.ru, 117997, Russia, Moscow, Ac. Oparin str., 4.
Zulfiya S. Khodzhaeva, Dr. Med. Sci., Professor, Deputy Director of Obstetrics Institute, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-07-88, z_khodzhaeva@oparina4.ru, https://orcid.org/0000-0001-8159-3714,
117997, Russia, Moscow, Ac. Oparin str., 4.
Corresponding author: Anna S. Bolshakova, a_bolshakova@oparina4.ru