On systemic pathophysiology of preeclampsia: the role of maternal venous hemodynamic disorders and renal dysfunction

Tsyvian P.B., Malgina G.B., Kosovtsova N.V., Markova T.V., Salimova N.A.

1) Ural Research Institute of Maternal and Infant Care, Ministry of Health of Russia, Yekaterinburg, Russia; 2) Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia
The review summarizes the results of current clinical and experimental studies of renal function and venous hemodynamics in physiological pregnancy and in two types of preeclampsia (PE): early-onset PE that occurs between 20 and 34 weeks’ gestation and late-onset PE that is observed after 34 weeks’ gestation. It is shown that the trophoblast cells not only invade into the uterine spiral arteries, but also into the lymphatic vessels and veins to create an open channel of communication with the intervillous space. As this takes place, remodeling occurs earlier in the venous segment than in the arterial one, which is of great importance for the development of pregnancy pathology. Ultrasound Doppler studies show that the venous system works close to the peak of its capabilities even in physiological pregnancy. The pathological type of venous blood flow signals is more frequently observed in early-onset PE than in late-onset PE, but is not seen in gestational hypertension. This type is characterized by the appearance of wave A that is associated with retrograde pressure through the vein in the right atrial systole, and is a sign of increased pressure in the venous system of a woman.
Conclusion. The authors show the relationship between venous hypertension and renal dysfunction in PE. They discuss the commonness of maternal and fetal venous system and kidney dysfunctions in PE, which could be important for the programming of fetal cardiovascular and renal diseases in later life.

Keywords

pathophysiology of pregnancy
renal function
venous insufficiency
preeclampsia
venous Doppler
maternal hemodynamics

References

  1. Айламазян Э.К., Мозговая Е.В. Гестоз: теория и практика. М.: МЕДпресс-информ; 2008. 272 с. [Ailamazyan E.K., Mozgovaya E.V. Gestosis: theory and practice. Moscow: Medpressinform. 2008; 272 р. (in Russian)].
  2. Айламазян Э.К., ред. Эндотелиальная дисфункция при гестозе. Патогенез, генетическая предрасположенность, диагностика и профилактика. СПб.: Издательство Н-Л; 2003. [Ailamazyan E.K., ed. Endothelial dysfunction in gestosis: Pathogenesis, genetical predisposition, diagnostics and prophylactics. Saint Petersburg; 2003. (in Russian)].
  3. Krabbendam I., Spaanderman M.E. Venous adjustments in healthy and hypertensive pregnancy. Expert Rev. Obstet. Gynecol. 2007; 2(5): 671-9. https://dx.doi.org/10.1586/17474108.2.5.671.
  4. Pang C.C. Measurement of body venous tone. J. Pharmacol.Toxicol. Methods. 2000; 44(2): 341-60. https://dx.doi.org/10.1016/s1056-8719(00)00124-6.
  5. Boulpaep E.L. The heart as a pump. In: Boron W.F., Boulpaep E.L., eds. Medical physiology. Philadelphia, PA: Elsevier; 2005: 508-33.
  6. Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008; 108(4): 735-48. https://10.1097/ALN.0b013e3181672607.
  7. Tyberg J.V. How changes in venous capacitance modulate cardiac output. Pflugers Arch. 2002; 445(1): 10-7. https://dx.doi.org/10.1007/s00424-002-0922-x.
  8. Janssens U., Graf J. Volume status and central venous pressure. Anaesthesist. 2009; 58(5): 513-9. https://dx.doi.org/10.1007/s00101-009-1531-2.
  9. Skudder P.A., Farrington D.T., Weld E., Putman C. Venous dysfunction of late pregnancy persists after delivery. J. Cardiovasc. Surg. 1990; 31(6): 748-52.
  10. Ganzevoort W., Rep A., Bonsel G.J., de Vries J.I., Wolf H. Plasma volume and blood pressure regulation in hypertensive pregnancy. J. Hypertens. 2004; 22(7): 1235-42. https://dx.doi.org/10.1097/01.hjh.0000125436.28861.09.
  11. Cheung K., Lafayette R. Renal physiology of pregnancy. Adv. Chronic Kidney Dis. 2013; 20(3): 209-14. https://dx.doi.org/10.1053/j.ackd.2013.01.012.
  12. Irani R.A., Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta. 2008; 29(9): 763-71. https://dx.doi.org/10.1016/j.placenta.2008.06.011.
  13. Rang S., van Montfrans G.A., Wolf H. Serial hemodynamic measurement in normal pregnancy, preeclampsia, and intrauterine growth restriction. Am. J. Obstet. Gynecol. 2008; 198(5): 519. e1-9. https://dx.doi.org/10.1016/j.ajog.2007.11.014.
  14. Spaanderman M.E., Ekhart T.H., van Eyck J., Cheriex E.C., de Leeuw P.W., Peeters L.L. Latent hemodynamic abnormalities in symptom-free women with a history y of preeclampsia. Am. J. Obstet. Gynecol. 2000; 182(1, Pt 1): 101-7.
  15. Krabbendam I., Courtar D.A., Janssen B.J., Aardenburg R., Peeters L.L., Spaanderman M.E. Blunted autonomic response to volume expansion in formerly preeclamptic women with low plasma volume. Reprod. Sci. 2009; 16(1): 105-12. https://dx.doi.org/10.1177/1933719108324136.
  16. Aardenburg R., Spaanderman M.E., van Eijndhoven H.W., de Leeuw P.W., Peeters L.L. Formerly preeclamptic women with a subnormal plasma volume are unable to maintain a rise in stroke volume during moderate exercise. J. Soc. Gynecol. Investig. 2005; 12(8): 599-603. https://dx.doi.org/10.1016/j.jsgi.2005.08.005.
  17. Khaw A., Kametas N.A., Turan O.M., Bamfo J.E., Nicolaides K.H. Maternal cardiac function and uterine artery Doppler at 11–14 weeks in the prediction of pre-eclampsia in nulliparous women. BJOG. 2008; 115(3): 369-76. https://dx.doi.org/10.1111/j.1471-0528.2007.01577.x.
  18. De Paco C., Kametas N., Rencoret G., Strobl I., Nicolaides K.H. Maternal cardiac output between 11 and 13 weeks of gestation in the prediction of preeclampsia and small for gestational age. Obstet. Gynecol. 2008; 111(2, Pt 1): 292-300. https://dx.doi.org/10.1097/01.AOG.0000298622.22494.0c.
  19. Valensise H., Vasapollo B., Gagliardi G., Novelli G.P. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension. 2008; 52(5): 873-80. https://dx.doi.org/10.1161/HYPERTENSIONAHA.108.117358.
  20. Stillman I.E., Karumanchi S.A. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 2007; 18(8): 2281-4. https://dx.doi.org/10.1681/ASN.2007020255.
  21. Jen K.Y., Haragsim L., Laszik Z.G. Kidney microvasculature in health and disease. Contrib. Nephrol. 2011; 169: 51-72. https://dx.doi.org/10.1159/000313945.
  22. Rakova N., Muller D.N., Staff A.C., Luft F.C., Dechend R. Novel ideas about salt, blood pressure, and pregnancy. J. Reprod. Immunol. 2014; 101-102: 135-9. https://dx.doi.org/10.1016/j.jri.2013.04.001.
  23. Xia Y., Zhou C.C., Ramin S.M., Kellems R.E. Angiotensin receptors, autoimmunity, and preeclampsia. J. Immunol. 2007; 179(6): 3391-5. https://dx.doi.org/10.4049/jimmunol.179.6.3391.
  24. Herse F., Verlohren S., Wenzel K., Pape J. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in gestational age-matched case study. Hypertension. 2009; 53(2): 393-8. https://dx.doi.org/10.1161/HYPERTENSIONAHA.108.124115.
  25. Staelens A.S., Vonck S., Molenberghs G., Malbrain, M.L., Gyselaers W. Maternal body fluid composition in uncomplicated pregnancies and preeclampsia: A bioelectrical impedance analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016; 204: 69-73. https://dx.doi.org/10.1016/j.ejogrb.2016.07.502.
  26. Salas S.P., Marshall G., Gutiérrez B.L., Rosso P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006; 47(2): 203-8. https://dx.doi.org/10.1161/01.HYP.0000200042.64517.19.
  27. Ilyas A., Ishtiaq W., Assad S., Ghazanfar H., Mansoor S., Haris M. Correlation of IVC diameter and collapsibility index with central venous pressure in the assessment of intravascular volume in critically ill patients. Cureus. 2017; 9(2): e1025. https://dx.doi.org/10.7759/cureus.1025.
  28. Ronco C., Haapio M., House A.A., Anavekar N., Bellomo R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008; 52(19): 1527-39. https://dx.doi.org/10.1016/j.jacc.2008.07.051.
  29. Tang W.H., Mullens W. Cardiorenal syndrome in decompensated heart failure. Heart. 2010; 96(4): 255-60. https://dx.doi.org/10.1136/hrt.2009.166256.
  30. Verbrugge F.H., Dupont M., Steels P., Grieten L., Malbrain M., Tang W.H., Mullens W. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J. Am. Coll. Cardiol. 2013; 62(6): 485-95. https://dx.doi.org/10.1016/j.jacc.2013.04.070.
  31. Moser G., Weiss G., Sundl M., Gauster M., Siwetz M., Lang-Olip I., Huppertz B. Extravillous trophoblasts invade more than uterine arteries: Evidence for the invasion of uterine veins. Histochem. Cell Biol. 2017; 147(3): 353-66. https://dx.doi.org/10.1007/s00418-016-1509-5.
  32. Moser G., Windsperger K., Pollheimer J., de Sousa Lopes S.C., Huppertz B. Human trophoblast invasion: New and unexpected routes and functions. Histochem. Cell Biol. 2018; 150(4): 361-70. https://dx.doi.org/10.1007/s00418-018-1699-0.
  33. He N., van Iperen L., de Jong D., Szuhai K., Helmerhorst F.M., van der Westerlaken L.A. Human extravillous trophoblasts penetrate decidual veins and lymphatics before remodeling spiral arteries during early pregnancy. PLoS One. 2017; 12(1): e0169849. https://dx.doi.org/10.1371/journal.pone.0169849.
  34. Craven C.M., Zhao L., Ward K. Lateral placental growth occurs by trophoblast cell invasion of decidual veins. Placenta. 2000; 21(2-3): 160-9. https://dx.doi.org/10.1053/plac.1999.0449.
  35. Wedel Jones C., Mandala M., Barron C., Bernstein I., Osol G. Mechanisms underlying maternal venous adaptation in pregnancy. Reprod. Sci. 2009; 16(6): 596-604. https://dx.doi.org/10.1177/1933719109332820.
  36. Lui E.Y., Steinman A.H., Cobbold R.S., Johnston K.W. Human factors as a source of error in peak Doppler velocity measurement. J. Vasc. Surg. 2005; 42(5): 972-9. https://dx.doi.org/10.1016/j.jvs.2005.07.014.
  37. Gyselaers W. Hemodynamics of the maternal venous compartment: A new area to explore in obstetric ultrasound imaging. Ultrasound Obstet. Gynecol. 2008; 32(5): 716-7. https://dx.doi.org/10.1002/uog.6113.
  38. Tomsin K., Mesens T., Molenberghs G., Gyselaers W. Venous pulse transit time in normal pregnancy and preeclampsia. Reprod. Sci. 2012; 19(4): 431-6. https://dx.doi.org/10.1177/1933719111424440.
  39. Bateman G.A., Giles W., England S.L. Renal venous Doppler sonography in preeclampsia. J. Ultrasound Med. 2004; 23(12): 1607-11. https://dx.doi.org/10.7863/jum.2004.23.12.1607.
  40. Tomsin K. The maternal venous system: The ugly duckling of obstetrics. Facts Views Vis. Ob. Gyn. 2013; 5(2): 116-23.
  41. Gyselaers W., Mullens W., Tomsin K., Mesens T., Peeters L. Role of dysfunctional maternal venous hemodynamics in the pathophysiology of pre-eclampsia: A review. Ultrasound Obstet. Gynecol. 2011; 38(2): 123-9. https://dx.doi.org/10.1002/uog.9061.
  42. Gyselaers W., Mesens T., Tomsin K., Molenberghs G., Peeters L. Maternal renal interlobar vein impedance index is higher in early- than in late-onset pre-eclampsia. Ultrasound Obstet. Gynecol. 2010; 36(1): 69-75. https://dx.doi.org/10.1002/uog.7591.
  43. Amaral L.M., Cunningham M.W., Cornelius D.C., LaMarca B. Preeclampsia: long-term consequences for vascular health. Vasc. Health Risk Manag. 2015; 11: 403-15. https://dx.doi.org/10.2147/VHRM.S64798.
  44. Lopes van Balen V.A., Spaan J.J., Cornelis T., Spaanderman M.E.A. Prevalence of chronic kidney disease after preeclampsia. J. Nephrol. 2017; 30(3): 403-9. https://dx.doi.org/10.1007/s40620-016-0342-1.
  45. Krabbendam I., Maas M.L., Thijssen D.H., Oyen W.J., Lotgering F.K., Hopman M.T., Spaanderman M.E. Exercise-induced changes in venous vascular function in nonpregnant formerly preeclamptic women. Reprod. Sci. 2009; 16(4): 414-20. https://dx.doi.org/10.1177/1933719109332091.
  46. Breetveld N.M., Ghossein-Doha C., van Kuijk S., van Dijk A.P., van der Vlugt M.J., Heidema W.M., Scholten R.R., Spaanderman M.E. Cardiovascular disease risk is only elevated in hypertensive, formerly preeclamptic women. BJOG. 2015; 122(8): 1092-100. https://dx.doi.org/10.1111/1471-0528.13057.
  47. Huppertz B., Weiss G., Moser G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J. Reprod. Immunol. 2014; 101-102: 74-9. https://dx.doi.org/10.1016/j.jri.2013.04.003.
  48. Tsyvian P.B., Markova T.V., Mikhailova S.V., Hop W.C.J., Wladimiroff J.W. Left ventricular isovolumic relaxation and rennin-angiotensin system in the growth restricted fetus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008; 140(1): 33-7. https://dx.doi.org/10.1016/j.ejogrb.2008.02.005.
  49. Luyckx V.A., Perico N., Somaschini M., Manfellotto D., Valensise H., Cetin I. et al. A developmental approach to the prevention of hypertension and kidney disease: A report from the Low Birth Weight and Nephron Number Working Group. Lancet. 2017; 390(10092): 424-8. https://dx.doi.org/10.1016/S0140-6736(17)30576-7.

Received 17.06.2020

Accepted 11.01.2021

About the Authors

Pavel B. Tsyvian, MD, DSc, professor, leading researcher, Mother and Child Care Research Institute, Ministry of Health of Russia; Head of the Department of Physiology,
Ural State Medical University, Ministry of Health of Russia. Tel.: +7(343)371-52-74. E-mail: Pavel.tsyvian@gmail.com. 620028, Russia, Yekaterinburg, Repin str., 1.
Galina B. Malgina, MD, DSc, professor, Director of Mother and Child Care Research Institute, Ministry of Health of Russia. Tel.: +7(343)371-87-68.
E-mail: galinamalgina@mail.ru. 620028, Russia, Yekaterinburg, Repin str., 1.
Natalia V. Kosovtsova, MD, DSc, Head of Ultrasound Department, Mother and Child Care Research Institute, Ministry of Health of Russia.
Tel.: +7(343)371-52-74. E-mail: kosovcovan@mail.ru. 620028, Russia, Yekaterinburg, Repin str., 1.
Tatiana V. Markova, MD, PhD, leading researcher of Ultrasound Department, Mother and Child Care Research Institute, Ministry of Health of Russia. Tel.: +7(343)371-52-74. E-mail: ta.ma.vl@mail.ru. 620028, Russia, Yekaterinburg, Repin str., 1.
Natalia A. Salimova, PhD, assistent of the Department of Physiology, Ural State Medical University, Ministry of Health of Russia.
Tel.: +7(343)214-86-97. E-mail: pyatyshkinan@mail.ru. 620028, Russia, Yekaterinburg, Repin str., 3.

For citation: Tsyvian P.B., Malgina G.B., Kosovtsova N.V., Markova T.V., Salimova N.A. On systemic pathophysiology of preeclampsia: the role of maternal venous hemodynamic disorders and renal dysfunction.
Akusherstvo i Ginekologiya /Obstetrics and Gynecology. 2021; 4: 5-11 (in Russian)
https://dx.doi.org/10.18565/aig.2021.4.5-11

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.