Genes involved in premature ovarian failure

Chernukha G.E., Tabeeva G.I., Rshtuni S.D., Mashaeva R.I., Chernykh V.B., Marchenko L.A.

1) Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia; 2) Academician N.P. Bochkov Research Center for Medical Genetics, Moscow, Russia
Premature ovarian failure (POF) is a clinical syndrome characterized by secondary amenorrhea in the presence of high FSH levels in women under the age of 40 years. The incidence of this pathology is progressively rising and currently amounting for 3–4%. Premature depletion of the ovarian reserve may be related to both genetic and environmental factors and their combination, including infectious, toxic, and autoimmune damage to the ovaries, as well as to chromosomal abnormalities, genetic variants, and epigenetic factors. This review identifies a panel of the most significant candidate genes involved in the genesis of POF, such as NANOS3, FIGLA, FOXO3, NR5A1, NOBOX, BMP15, GDF9, PGRMCI, PTEN, and BRCA1,2. These genes are responsible for a key role in early folliculogenesis, including for the formation of primary follicles and for the production of the zona pellucida, for their growth to the FSH-dependent stage, for the inhibition of FSH receptor mRNA expression in granulosa cells, thereby preventing the premature luteinization of follicles, as well as for early steroidogenesis and regulation of apoptotic processes in primordial follicles.
Conclusion: Knowledge of candidate genes underlying the genesis of POF, as well as the possibility of performing whole exome sequencing in clinical practice will be of defined value not only in understanding the physiology of the ovaries, but also for genetic counseling to make an early (preclinical) diagnosis of POF.

Keywords

candidate genes
neхt-generation sequencing
premature ovarian failure

References

  1. European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI.; Webber L., Davies M., Anderson R., Bartlett J., Braat D., Cartwright B. et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum. Reprod. 2016; 31(5): 926-37. https://dx.doi.org/10.1093/humrep/dew027.
  2. Luborsky J.L., Meyer P., Sowers M.F., Gold E.B., Santoro N. Premature menopause in a multi-ethnic population study of the menopause transition. Hum. Reprod. 2003; 18(1): 199-206. https://dx.doi.org/10.1093/humrep/deg005.
  3. Golezar S., Ramezani Tehrani F., Khazaei S., Ebadi A., Keshavarz Z. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric. 2019; 22(4): 403-11. https://dx.doi.org/10.1080/13697137.2019.1574738.
  4. Wu X., Cai H., Kallianpur A., Li H., Yang G., Gao J. et al. Impact of premature ovarian failure on mortality and morbidity among Chinese women. PLoS One. 2014; 9(3): e89597. https://dx.doi.org/10.1371/journal.pone.0089597.
  5. Goswami D., Conway G.S. Premature ovarian failure. Horm. Res. 2007; 68(4): 196-202. https://dx.doi.org/10.1159/000102537.
  6. Van Kasteren Y.M., Hundscheid R.D., Smits A.P., Cremers F.P., van Zonneveld P., Braat D.D. Familial idiopathic premature ovarian failure: an overrated and underestimated genetic disease. Hum. Reprod. 1999; 14(10): 2455-9. https://dx.doi.org/10.1093/humrep/14.10.2455.
  7. Mendoza N., Juliá M.D., Galliano D., Coronado P., Díaz B., Fontes J. et al. Spanish consensus on premature menopause. Maturitas. 2015; 80(2): 220-5. https://dx.doi.org/10.1016/j.maturitas.2014.11.007.
  8. Жахур Н.А., Марченко Л.А., Бутарева Л.Б. Преждевременная недостаточность функции яичников как результат анеуплоидии половых хромосом (обзор литературы). Проблемы репродукции. 2010; 16(6): 30-8. [Zhakhur O.N., Marchenko L.A., Butareva L.B. Premature ovarian failure as a result of sex chromosome aneuploidy. Problems of reproduction. 2010; 16(6): 30-8 (in Russian)].
  9. Nelson L.M. Clinical practice. Primary ovarian insufficiency. N. Engl. J. Med. 2009; 360(6): 606-14. https://dx.doi.org/10.1056/NEJMcp0808697.
  10. Norling A., Hirschberg A.L., Rodriguez-Wallberg K.A., Iwarsson E., Wedell A., Barbaro M. Identification of a duplication within the GDF9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform. Hum. Reprod. 2014; 29(8): 1818-27. https://dx.doi.org/10.1093/humrep/deu149.
  11. Bestetti I., Castronovo C., Sironi A., Caslini C., Sala C., Rossetti R. et al. High-resolution array-CGH analysis on 46,XX patients affected by early onset primary ovarian insufficiency discloses new genes involved in ovarian function. Hum. Reprod. 2019; 34(3): 574-83. https://dx.doi.org/10.1093/humrep/dey389.
  12. Katari S., Aarabi M., Kintigh A., Mann S., Yatsenko S.A., Sanfilippo J.S. et al. Chromosomal instability in women with primary ovarian insufficiency. Hum. Reprod. 2018; 33(3): 531-8. https://dx.doi.org/10.1093/humrep/dey012.
  13. Шамилова Н.Н., Марченко Л.А., Долгушина Н.В., Кузнецова Е.Б., Залетаев Д.В. Роль генетических и аутоиммунных нарушений в развитии преждевременной недостаточности яичников. Акушерство и гинекология. 2012; (4-2): 67-72. [Shamilova N.N., Marchenko L.A., Dolgushina N.V., Kuznetsova E.B., Zaletayev D.V. Role of genetic and autoimmune disorders in the development of premature ovarian failure. Obstetrics and Gynecology. 2012; (4-2): 67-72. (in Russian)].
  14. Rossetti R., Ferrari I., Bonomi M., Persani L. Genetics of primary ovarian insufficiency. Clin. Genet. 2017; 91(2): 183-98. https://dx.doi.org/10.1111/cge.12921.
  15. França M.M., Mendonca B.B. Genetics of primary ovarian insufficiency in the next-generation sequencing era. J. Endocr. Soc. 2019; 4(2): bvz037. https://dx.doi.org/10.1210/jendso/bvz037.
  16. Qin Y., Jiao X., Simpson J.L., Chen Z.J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum. Reprod. Update. 2015; 21(6):787-808. https://dx.doi.org/10.1093/humupd/dmv036.
  17. Qin Y., Zhao H., Kovanci E., Simpson J.L., Chen Z.J., Rajkovic A. Mutation analysis of NANOS3 in 80 Chinese and 88 Caucasian women with premature ovarian failure. Fertil. Steril. 2007; 88(5): 1465-7. https://dx.doi.org/ 10.1016/j.fertnstert.2007.01.020.
  18. Santos M.G., Machado A.Z., Martins C.N., Domenice S., Costa E.M., Nishi M.Y. et al. Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency. Biomed. Res. Int. 2014; 2014: 787465. https://dx.doi.org/ 10.1155/2014/787465.
  19. Zhao H., Chen Z.J., Qin Y., Shi Y., Wang S., Choi Y. et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am. J. Hum. Genet. 2008; 82(6): 1342-8. https://dx.doi.org/10.1016/j.ajhg.2008.04.018.
  20. Tosh D., Rani H.S., Murty U.S., Deenadayal A., Grover P. Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure. Menopause. 2015; 22(5): 520-6. https://dx.doi.org/10.1097/GME.0000000000000340.
  21. Liu L., Rajareddy S., Reddy P., Du C., Jagarlamudi K., Shen Y. et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development. 2007; 134(1): 199-209. https://dx.doi.org/10.1242/dev.02667.
  22. Philibert P., Leprieur E., Zenaty D., Thibaud E., Polak M., Frances A.M. et al. Steroidogenic factor-1 (SF-1) gene mutation as a frequent cause of primary amenorrhea in 46,XY female adolescents with low testosterone concentration. Reprod. Biol. Endocrinol. 2010; 8: 28. https://dx.doi.org/10.1186/1477-7827-8-28.
  23. Lourenço D., Brauner R., Lin L., De Perdigo A., Weryha G., Muresan M. et al. Mutations in NR5A1 associated with ovarian insufficiency. N. Engl. J. Med. 2009; 360(12): 1200-10. https://dx.doi.org/10.1056/NEJMoa0806228.
  24. Janse F., de With L.M., Duran K.J., Kloosterman W.P., Goverde A.J., Lambalk C.B. et al.; Dutch Primary Ovarian Insufficiency Consortium. Limited contribution of NR5A1 (SF-1) mutations in women with primary ovarian insufficiency (POI). Fertil. Steril. 2012; 97(1): 141-6.e2. https://dx.doi.org/10.1016/j.fertnstert.2011.10.032.
  25. Suzumori N., Yan C., Matzuk M.M., Rajkovic A. Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech. Dev. 2002; 111(1-2): 137-41. https://dx.doi.org/10.1016/s0925-4773(01)00620-7.
  26. Huntriss J., Hinkins M., Picton H.M. cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol. Hum. Reprod. 2006; 12(5): 283-9. https://dx.doi.org/10.1093/molehr/gal035.
  27. Qin Y., Choi Y., Zhao H., Simpson J.L., Chen Z.J., Rajkovic A. NOBOX homeobox mutation causes premature ovarian failure. Am. J. Hum. Genet. 2007; 81(3): 576-81. https://dx.doi.org/10.1086/519496.
  28. Qin Y., Shi Y., Zhao Y., Carson S.A., Simpson J.L., Chen Z.J. Mutation analysis of NOBOX homeodomain in Chinese women with premature ovarian failure. Fertil. Steril. 2009; 91(4 Suppl.): 1507-9. https://dx.doi.org/10.1016/j.fertnstert.2008.08.020.
  29. Bouilly J., Bachelot A., Broutin I., Touraine P., Binart N. Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort. Hum. Mutat. 2011; 32(10): 1108-13. https://dx.doi.org/10.1002/humu.21543.
  30. Di Pasquale E., Beck-Peccoz P., Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15(BMP15) gene. Am. J. Hum. Genet. 2004; 75(1): 106-11. https://dx.doi.org/10.1086/422103.
  31. Di Pasquale E., Rossetti R., Marozzi A., Bodega B., Borgato S., Cavallo L. et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J. Clin. Endocrinol. Metab. 2006; 91(5): 1976-9. https://dx.doi.org/10.1210/jc.2005-2650.
  32. Wang B., Wen Q., Ni F., Zhou S., Wang J., Cao Y. et al. Analyses of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) mutation in Chinese women with premature ovarian failure. Clin. Endocrinol. (Oxf). 2010; 72(1): 135-6. https://dx.doi.org/10.1111/j.1365-2265.2009.03613.x.
  33. Ledig S., Röpke A., Haeusler G., Hinney B., Wieacker P. BMP15 mutations in XX gonadal dysgenesis and premature ovarian failure. Am. J. Obstet. Gynecol. 2008; 198(1): 84.e1-5. https://dx.doi.org/10.1016/j.ajog.2007.05.029.
  34. Persani L., Rossetti R., Cacciatore C., Fabre S. Genetic defects of ovarianTGF-β-like factors and premature ovarian failure. J. Endocrinol. Invest. 2011; 34(3): 244-51. https://dx.doi.org/10.1007/BF03347073.
  35. Shimasaki S., Moore R.K., Otsuka F., Erickson G.F. The bone morpho-genetic protein system in mammalian reproduction. Endocr. Rev. 2004; 25(1): 72-101. https://dx.doi.org/10.1210/er.2003-0007.
  36. Lösel R.M., Besong D., Peluso J.J., Wehling M. Progesterone receptor membrane component 1 – many tasks for a versatile protein. Steroids. 2008; 73(9-10):929-34. https://dx.doi.org/10.1016/j.steroids.2007.12.017.
  37. Cahill M.A. Progesterone receptor membrane component 1: an integrative review. J. Steroid Biochem. Mol. Biol. 2007; 105(1-5): 16-36. https://dx.doi.org/10.1016/j.jsbmb.2007.02.002.
  38. Mansouri M.R., Schuster J., Badhai J., Stattin E.L., Losel R., Wehling M. et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum. Mol. Genet. 2008; 17(23): 3776-83. https://dx.doi.org/10.1093/hmg/ddn274.
  39. Engmann L., Losel R., Wehling M., Peluso J.J. Progesterone regulation of human granulosa/luteal cell viability by an RU486-independent mechanism. J. Clin. Endocrinol. Metab. 2006; 91(12): 4962-8. https://dx.doi.org/10.1210/jc.2006-1128.
  40. Peluso J.J., Pappalardo A., Losel R., Wehling M. Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone's antiapoptotic action. Endocrinology. 2006; 147(6): 3133-40. https://dx.doi.org/10.1210/en.2006-0114.
  41. Verkerk A.J.M., Pieretti M., Sutcliffe J.S., Fu Y.H., Kuhl D.P.A., Pizzuti A. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991; 65(5): 905-14. https://dx.doi.org/10.1016/0092-8674(91)90397-h.
  42. Yu S., Pritchard M., Kremer E., Lynch M., Nancarrow J., Baker E. et al. Fragile X genotype characterized by an unstable region of DNA. Science. 1991; 252(5009): 1179-81. https://dx.doi.org/10.1126/science.252.5009.1179.
  43. Eichler E.E., Richards S., Gibbs R.A., Nelson D.L. Fine structure of the human FMR1 gene. Hum. Mol. Genet. 1993; 2(8): 1147-53. https://dx.doi.org/10.1093/hmg/2.8.1147.
  44. Tassone F. Newborn screening for fragile X syndrome. JAMA Neurol. 2014; 71(3): 355-9. https://dx.doi.org/10.1001/jamaneurol.2013.4808.
  45. Марченко Л.А., Рштуни С.Д., Зарецкая М.В., Пихут П.П., Машаева Р.И. Роль гена FMR1 в развитии репродуктивной и неврологической патологии. Акушерство и гинекология. 2018; 3: 22-8. [Marchenko L.A., Rshtuni S.D. The role of the FMR1 gene in the development of reproductive and neurological pathology. Obstetrics and gynecology. 2018; 3: 22-8. (in Russian)].https://dx.doi.org/10.18565/aig.2018.3.22-28.
  46. Allingham-Hawkins D.J., Babul-Hirji R., Chitayat D., Holden J.J., Yang K.T., Lee C. et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study - preliminary data. Am. J. Med. Genet. 1999; 83(4): 322-5.
  47. Shapira M., Raanani H., Feldman B., Srebnik N., Dereck-Haim S., Manela D. et al. BRCA mutation carriers show normal ovarian response in in vitro fertilization cycles. Fertil. Steril. 2015; 104(5): 1162-7. https://dx.doi.org/10.1016/j.fertnstert.2015.07.1162.
  48. Любченко Л.Н., Батенева Е.И. Медико-генетическое консультирование и ДНК-диагностика при наследственной предрасположенности к раку молочной железы и раку яичников. Пособие для врачей. М.: ИГ РОНЦ; 2014. 63 с. [Lyubchenko L.N., Bateneva E.I. Medical genetic counseling and DNA diagnostics in case of hereditary predisposition to breast and ovarian cancer. A guide for doctors. M.: IG RONTs; 2014. 64 p. (in Russian)].
  49. Stolz A., Ertych N., Kienitz A., Vogel C., Schneider V., Fritz B. et al. The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat. Cell Biol. 2010; 12(5): 492-9. https://dx.doi.org/10.1038/ncb2051.
  50. Xiong B., Li S., Ai J.S., Yin S., Ouyang Y.C., Sun S.C. et al. BRCA1 is required for meiotic spindle assembly and spindle assembly checkpoint activation in mouse oocytes. Biol. Reprod. 2008; 79(4): 718-26. https://dx.doi.org/10.1095/biolreprod.108.069641.
  51. Pal T., Keefe D., Sun P., Narod S.A.; Hereditary Breast Cancer Clinical Study Group. Fertility in women with BRCA mutations: a case-control study. Fertil. Steril. 2010; 93(6): 1805-8. https://dx.doi.org/10.1016/j.fertnstert.2008.12.052.
  52. Wang E.T., Pisarska M.D., Bresee C., Chen Y.D.I., Lester J., Afshar Y. et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil. Steril. 2014; 102(6): 1723-8. https://dx.doi.org/10.1016/j.fertnstert.2014.08.014.
  53. Finch A., Valentini A., Greenblatt E., Lynch H.T., Ghadirian P., Armel S. et al. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation. Fertil. Steril. 2013; 99(6): 1724-8. https://dx.doi.org/10.1016/j.fertnstert.2013.01.109.
  54. Titus S., Li F., Stobezki R., Akula K., Unsal E., Jeong K. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 2013; 5(172): 172ra21. https://dx.doi.org/10.1126/scitranslmed.3004925.
  55. Rzepka-Gorska I., Tarnowski B., Chudecka-Glaz A., Gorski B., Zielinska D., Toloczko-Grabarek A. Premature menopause in patients with BRCA1 gene mutation. Breast Cancer Res. Treat. 2006; 100(1): 59-63. https://dx.doi.org/10.1007/s10549-006-9220-1.
  56. Oktay K., Kim J.Y., Barad D., Babayev S.N. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J. Clin. Oncol. 2010; 28(2): 240-4. https://dx.doi.org/10.1200/JCO.2009.24.2057.
  57. Laitman Y., Ries-Levavi L., Berkensdadt M., Korach J., Perri T., Pras E. et al. FMR1 CGG allele length in Israeli BRCA1/BRCA2 mutation carriers and the general population display distinct distribution patterns. Genet. Res. (Camb). 2014; 96: e11. https://dx.doi.org/10.1017/S0016672314000147.
  58. Ford D., Easton D.F., Peto J. Estimates of the gene frequency of BRCA1 and its contribution to breast and ovarian cancer incidence. Am. J. Hum. Genet. 1995; 57(6): 1457-62.
  59. Warner E., Foulkes W., Goodwin P., Meschino W., Blondal J., Paterson C. et al. Prevalence and penetrance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J. Natl. Cancer Inst. 1999; 91(14): 1241-7. https://dx.doi.org/10.1093/jnci/91.14.1241.
  60. Reddy P., Liu L., Adhikari D., Jagarlamudi K., Rajareddy S., Shen Y. et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 2008; 319(5863): 611-3. https://dx.doi.org/10.1126/science.1152257.
  61. Venturella R., De Vivo V., Carlea A., D'Alessandro P., D'Alessandro P., Saccone G. et al. The genetics of non-syndromic primary ovarian insufficiency: a systematic review. Int. J. Fertil. Steril. 2019; 13(3): 161-8. https://dx.doi.org/10.22074/ijfs.2019.5599.
  62. Huhtaniemi I., Hovatta O., La Marca A., Livera G., Monniaux D., Persani L. et al. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol. Metab. 2018; 29(6): 400-19. https://dx.doi.org/10.1016/j.tem.2018.03.010.
  63. Caburet S., Arboleda V.A., Llano E., Overbeek P.A., Barbero J.L., Oka K. et al. Mutant cohesin in premature ovarian failure. N. Engl. J. Med. 2014; 370(10): 943-9. https://dx.doi.org/10.1056/NEJMoa1309635.
  64. de Vries L., Behar D.M., Smirin-Yosef P., Lagovsky I., Tzur S., Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J. Clin. Endocrinol. Metab. 2014; 99(10):e2129-32. https://dx.doi.org/10.1210/jc.2014-1268.
  65. Lee K.Y., Im J.S., Shibata E., Park J., Handa N., Kowalczykowski S.C. et al. MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat. Commun. 2015; 6: 7744. https://dx.doi.org/10.1038/ncomms8744.
  66. Fonseca D.J., Patiño L.C., Suárez Y.C., de Jesús Rodríguez A., Mateus H.E., Jiménez K.M. et al. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations. Fertil. Steril. 2015; 104(1): 154-62.e2. https://dx.doi.org/10.1016/j.fertnstert.2015.04.016.
  67. Qin Y., Zhao H., Xu J., Shi Y., Li Z., Qiao J. et al.; China POF Study Group. Association of 8q22.3 locus in Chinese Han with idiopathic premature ovarian failure (POF). Hum. Mol. Genet. 2012; 21(2): 430-6. https://dx.doi.org/10.1093/hmg/ddr462.
  68. Марченко Л.А., Машаева Р.И. Клинико-лабораторная оценка овариального резерва с позиции репродуктолога. Акушерство и гинекология. 2018; 8: 22-5. [Marchenko L.A., Mashaeva R.I. Clinical and laboratory assessment of the ovarian reserve from the position of a reproductologist. Obstetrics and Gynecology. 2018; 8: 22-5. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.8.22-25.
  69. Virant-Klun I., Ståhlberg A., Kubista M., Skutella T. MicroRNAs: from female fertility, germ cells, and stem cells to cancer in humans. Stem Cells Int. 2016; 2016: 3984937. https://dx.doi.org/10.1155/2016/3984937.
  70. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-97. https://dx.doi.org/10.1016/s0092-8674(04)00045-5.
  71. Ma X., Chen Y., Zhao X., Chen J., Shen C., Yang S. Association study of TGFBR2 and miR-518 gene polymorphisms with age at natural menopause, premature ovarian failure, and early menopause among Chinese Han women. Medicine (Baltimore). 2014; 93(20): e93. https://dx.doi.org/10.1097/md.0000000000000093.

Received 25.06.2021

Accepted 14.10.2021

About the Authors

Galina E. Chernukha, Dr. Med. Sci., Professor, Department of Endocrinological Gynecology, V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of Russian Federation, g_chernukha@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Gyuzyal I. Tabeeva, Senior Researcher of the Department of Gynecological Endocrinology, V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of Russian Federation, +7(903)199-72-82, doctor.gtab@gmail.com, 117997, Russia, Moscow, Ac. Oparina str., 4.
Sandra D. Rshtuni, postgraduate student, Department of Endocrinological Gynecology, V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of Russian Federation, rshtunisandra@gmail.com, 117997, Russia, Moscow, Ac. Oparina str., 4.
Roza I. Mashaeva, postgraduate student, Department of Endocrinological Gynecology, V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of Russian Federation, mashaevarosa@gmail.com, 117997, Russia, Moscow, Ac. Oparina str., 4.
Vyacheslav B. Chernykh, Dr. Med. Sci., Bochkov Research Centre for Medical Genetics, Pirogov Russian National Research Medical University, chernykh@med-gen.ru,
https://orcid.org/0000-0003- 2719-503, 115522, Russia, Moscow, Moskvorechye str., 1.
Larisa A. Marchenko, Dr. Med. Sci., Professor, Department of Endocrinological Gynecology, V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of Russian Federation, l_marchenko@yandex.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.

Authors’ contributions: Mashaeva R.I., Rshtuni S.D. – review of literature; Marchenko L.A., Rshtuni S.D., Mashaeva R.I. – writing the text; Chernykh V.B., Chernukha G.E., Tabeeva G.I. – editing the text.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The article has been written within the framework of the state assignment “Elaboration of innovative approaches to the prediction and preclinical diagnosis of premature ovarian failure, by identifying molecular genetic and clinical hormonal markers in the female representatives of the Russian population in different age periods”, No. 121032500121-8, Internal No. 17-A21.
For citation: Chernukha G.E., Tabeeva G.I., Rshtuni S.D., Mashaeva R.I., Chernykh V.B., Marchenko L.A. Genes involved in premature ovarian failure.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 11: 71-80 (in Russian)
https://dx.doi.org/10.18565/aig.2021.11.71-80

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.