Diagnosis of fetal central nervous system anomalies in the first trimester of pregnancy
Talolinа O.V., Chugunova L.A., Gus A.I.
Background: Early detection of central nervous system (CNS) anomalies is of great importance due to the substantial impact of such anomalies on the development of the CNS, often resulting in the onset of neuropsychiatric disability and cognitive impairment. Congenital pathology of CNS development is one of the main causes of perinatal and early infant mortality. Echographic evaluation of the CNS in the first trimester of pregnancy is extremely challenging due to the active development of brain structures during this period. However, scientific and technological progress in the last decade has expanded the diagnostic possibilities for obtaining new information about the characteristics and nature of pathological changes.
Objective: To analyze scientific publications reporting early detection of fetal CNS anomalies using volumetric ultrasound imaging.
Materials and methods: The literature search was performed in Scopus, Medline (PubMed), and eLibrary databases. The relevant sources were analyzed. Forty-seven scientific papers were used.
Results: The data on modern possibilities of ultrasonic diagnostics in the first trimester of pregnancy for early detection of fetal CNS anomalies were obtained.
Conclusion: The scientific literature highlights the clinical value and relevance of the development and implementation of expert multiparametric fetal neurosonography in the first trimester, according to the methodology recommended for specialised examination in the second trimester of pregnancy. The effectiveness of combining three-dimensional echography with genetic research methods and the application of machine analysis of echograms was confirmed.
Authors’ contributions: Talolina O.V. – developing the idea and concept of the study, collecting and analyzing literary data, writing the text; Chugunova L.A., Gus A.I. – developing the concept, analyzing literary data, editing the text.
Conflicts of interest: Authors declare lack of the possible conflicts of interests.
Funding: The study was carried out without sponsorship.
For citation: Talolinа O.V., Chugunova L.A., Gus A.I. Diagnosis of
fetal central nervous system anomalies in the first trimester of pregnancy.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (6): 5-12 (in Russian)
https://dx.doi.org/10.18565/aig.2025.49
Keywords
References
- Tagliabue G., Tessandori R., Caramaschi F., Fabiano S., Maghini A., Tittarelli A. et al. Descriptive epidemiology of selected birth defects, areas of Lombardy, Italy, 1999. Popul. Health Metr. 2007; 5: 4. https://dx.doi.org/10.1186/1478-7954-5-4
- Туманова У.Н., Шувалова М.П., Щеголев А.И. Анализ статистических показателей врожденных аномалий как причины ранней неонатальной смерти в Российской Федерации. Росcийский вестник перинатологии и педиатрии. 2018; 63(6): 60-7. [Tumanova U.N., Shuvalova M.P., Schegolev A.I. Analysis of statistical indicators of congenital anomalies as causes of early neonatal death in the Russian Federation. Russian Bulletin of Perinatology and Pediatrics. 2018; 63(6): 60-7. (in Russian)]. https://dx.doi.org/10.21508/1027-4065-2018-63-5-60-67
- Atta C.A., Fiest K.M., Frolkis A.D., Jette N., Pringsheim T., St Germaine-Smith C. et al. Global birth prevalence of spina bifida by folic acid fortification status: a systematic review and meta-analysis. Am. J. Public Health. 2016; 106(1): e24-34. https://dx.doi.org/10.2105/AJPH.2015.302902
- Morris J.K., Wellesley D.G., Barisic I., Addor M.C., Bergman J.E.H., Braz P. et al. Epidemiology of congenital cerebral anomalies in Europe: a multicentre, population-based EUROCAT study. Arch. Dis. Child. 2019; 104(12): 1181-7. https://dx.doi.org/10.1136/archdischild-2018-316733
- Leibovitz Z., Lerman-Sagie T., Haddad L. Fetal brain development: regulating processes and related malformations. Life (Basel). 2022; 12(6): 809. https://dx.doi.org/10.3390/life12060809
- Myrianthopoulos N.C. Epidemiology of central nervous system malformations. In: Vinken P.J., Bruyn G.W., eds. Handbook of Clinical Neurology. Elsevier: Amsterdam; 1977: 139-71.
- Engels A.C., Joyeux L., Brantner C., De Keersmaecker B., De Catte L., Baud D. et al. Sonographic detection of central nervous system defects in the first trimester of pregnancy. Prenat. Diagn. 2016; 36(3): 266-73. https://dx.doi.org/10.1002/pd.4770
- Cara M.L., Streatam I., Buga A.M., Iliescu D.G. Developmental brain asymmetry. The good and the bad sides. Symmetry. 2022; 14(1): 128. https://dx.doi.org/10.3390/sym14010128
- Andescavage N.N., Du Plessis A., McCarter R., Serag A., Evangelou I., Vezina G. et al. Complex trajectories of brain development in the healthy human fetus. Cerebral Cortex. 2017; 27(11): 5274-83. https://dx.doi.org/10.1093/cercor/bhw306
- Malinger G., Paladini D., Haratz K.K., Monteagudo A., Pilu G.L., Timor-Tritsch I.E. ISUOG Practice Guidelines (updated): sonographic examination of the fetal central nervous system. Part 1: performance of screening examination and indications for targeted neurosonography. Ultrasound Obstet. Gynecol. 2020; 56(3): 476-84. https://dx.doi.org/10.1002/uog.22145
- Hu Y., Sun L., Feng L., Wang J., Zhu Y., Wu Q. The role of routine first-trimester ultrasound screening for central nervous system abnormalities: a longitudinal single-center study using an unselected cohort with 3-year experience. BMC Pregnancy Childbirth. 2023; 23(1): 312. https://dx.doi.org/10.1186/s12884-023-05644-z
- Syngelaki A., Hammami A., Bower S., Zidere V., Akolekar R., Nicolaides K.H. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11-13 weeks' gestation. Ultrasound Obstet. Gynecol. 2019; 54(4): 468-76. https://dx.doi.org/10.1002/uog.20844
- Martins Santana E.F., Araujo Júnior E., Tonni G., Costa F.D.S., Meagher S. Acrania-exencephaly-anencephaly sequence phenotypic characterization using two- and three-dimensional ultrasound between 11 and 13 weeks and 6 days of gestation. J. Ultrason. 2018; 18(74): 240-6. https://dx.doi.org/10.15557/JoU.2018.0035
- Rousian M., Groenenberg I.A., Hop W.C., Koning A.H., van der Spek P.J., Exalto N. et al. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality. Reprod. Sci. 2013; 20(8): 899-908. https://dx.doi.org/10.1177/1933719112468950
- Scheier M., Lachmann R., Pětroš M., Nicolaides K.H. Three-dimensional sonography of the posterior fossa in fetuses with open spina bifida at 11-13 weeks' gestation. Ultrasound Obstet. Gynecol. 2011; 38(6): 625-9. https://dx.doi.org/10.1002/uog.9067
- Peker N., Yeniel A.O., Ergenoglu M., Hurşitoğlu S., Akercan F., Karadadaş N. Combination of intracranial translucency and 3D sonography in the first trimester diagnosis of neural tube defects: case report and review of literature. Ginekol. Pol. 2013; 84(1): 65-7. https://dx.doi.org/10.17772/gp/1543
- Altmann R., Schertler C., Scharnreitner I., Arzt W., Dertinger S., Scheier M. Diagnosis of fetal posterior fossa malformations in high-risk pregnancies at 12-14 gestational weeks by transvaginal ultrasound examination. Fetal. Diagn. Ther. 2020; 47(3): 182-7. https://dx.doi.org/10.1159/000501500
- Ushakov F., Sacco A., Andreeva E., Tudorache S., Everett T., David A.L. et al. Crash sign: new first-trimester sonographic marker of spina bifida. Ultrasound Obstet. Gynecol. 2019; 54(6): 740-5. https://dx.doi.org/10.1002/uog.20285
- Pertl B., Eder S., Stern C., Verheyen S. The fetal posterior fossa on prenatal ultrasound imaging: normal longitudinal development and posterior fossa anomalies. Ultraschall. Med. 2019; 40(6): 692-721. https://dx.doi.org/10.1055/a-1015-0157
- Volpe P., De Robertis V., Volpe G., Boito S., Fanelli T., Olivieri C. et al. Position of the choroid plexus of the fourth ventricle in first- and second-trimester fetuses: a novel approach to early diagnosis of cystic posterior fossa anomalies. Ultrasound Obstet. Gynecol. 2021; 58(4): 568-75. https://dx.doi.org/10.1002/uog.23651
- He S., Ruan J., Wang X., Lyu G., Wei Y., Huang T. et al. Measurement of fetal conus distance with 3D ultrasonography as a reliable prenatal diagnosis method for tethered cord syndrome. J. Obstet. Gynaecol. Res. 2020; 46(4): 587-94. https://dx.doi.org/10.1111/jog.14202
- Ramirez Zegarra R., Volpe N., Bertelli E., Amorelli G.M., Ferraro L., Schera G.B.L. et al. Three-dimensional sonographic evaluation of the position of the fetal conus medullaris at first trimester. Fetal Diagn. Ther. 2021; 48(6): 464-71. https://dx.doi.org/10.1159/000516516
- Conturso R., Contro E., Bellussi F., Youssef A., Pacella G., Martelli F. et al. Demonstration of the pericallosal artery at 11-13 weeks of gestation using 3D ultrasound. Fetal Diagn. Ther. 2015; 37(4): 305-9. https://dx.doi.org/10.1159/000366156
- Birnbaum R., Barzilay R., Brusilov M., Wolman I., Malinger G. The early pattern of human corpus callosum development: A transvaginal 3D neurosonographic study. Prenat. Diagn. 2020; 40(10): 1239-45. https://dx.doi.org/10.1002/pd.5735
- Leibovitz Z., Lerman-Sagie T., Haddad L. Fetal brain development: regulating processes and related malformations. Life (Basel). 2022; 12(6): 809. https://dx.doi.org/10.3390/life12060809
- Engels A.C., Joyeux L., Brantner C., De Keersmaecker B., De Catte L., Baud D. et al. Sonographic detection of central nervous system defects in the first trimester of pregnancy. Prenat. Diagn. 2016; 36(3): 266-73. https://dx.doi.org/10.1002/pd.4770
- O'Rahilly R., Müller F. Significant features in the early prenatal development of the human brain. Ann. Anat. 2008; 190(2): 105-18. https://dx.doi.org/10.1016/j.aanat.2008.01.001
- Müler F., O’Rahilly R. Embryonic development of the central nervous system. In: Paxinos G., Jürgen K.M., eds. The Human Nervous System, Second Edition. San Diego, California, USA Elsevier Academic Press;2004: 22-48.
- Boitor-Borza D., Crivii C., Farcasanu S., Stamatian F. Morphology of the human brain in the embryonic period: anatomical study and assessment by 7T magnetic resonance imaging. Obstetrica şi Ginecologia. 2015;LXIII: 47-52.
- Boitor-Borza D., Kovacs T., Stamatian F. Ganglionic eminence within the early developing brain visualized by 3D transvaginal ultrasound. Med. Ultrason. 2015; 17(3): 289-94. https://dx.doi.org/10.11152/mu.2013.2066.173.rbb
- Altmann R., Rechberger T., Altmann C., Hirtler L., Scharnreitner I., Stelzl P. et al. Development of the prosencephalic structures, ganglionic eminence, basal ganglia and thalamus at 11 + 3 to 13 + 6 gestational weeks on 3D transvaginal ultrasound including normative data. Brain Struct. Funct. 2023; 228(9):2089-101. https://dx.doi.org/10.1007/s00429-023-02679-y
- Altmann R., Scharnreitner I., Auer C., Hirtler L., Springer C., Falschlehner S. et al. Visualization of the third ventricle, the future cavum septi pellucidi, and the cavum veli interpositi at 11+3 to 13+6 gestational weeks on 3D transvaginal ultrasound including normative data. Ultraschall. Med. 2023; 44(1): e72-e82. https://dx.doi.org/10.1055/a-1683-6141
- Comănescu M.C., Căpitănescu R.G., Comănescu A.C., Cernea N., Popa A., Barbu E.M. et al. First trimester neurosonogram-our experience. Curr. Health Sci. J. 2019; 45(2): 167-73. https://dx.doi.org/10.12865/CHSJ.45.02.06
- Abuhamad A., Chaoui R. The getal central nervous system. In: Abuhamad A., Chaoui R., eds. First trimester ultrasound diagnosis of fetal abnormalities. 1. Philadelphia: Wolters Kluwer Health; 2018: 113-44.
- Lachmann R., Chaoui R., Moratalla J., Picciarelli G., Nicolaides K.H. Posterior brain in fetuses with open spina bifida at 11 to 13 weeks. Prenat. Diagn. 2011; 31(1): 103-6. https://dx.doi.org/10.1002/pd.2632
- Andreeva E. Octopus-like sign for diagnosis of spina bifida and Dandy-Walker anomaly at 11-13 weeks. sonoworld.com; 2013. Available at: https://sonoworld.com/TheFetus/page.aspx?id=3347
- Comanescu A., Cernea N., Tica O., Alexandru D., Comanescu C. OP07.04: Choroid plexus / head area ratio in normal and in spina bifida cases at 11–13+6 weeks' ultrasound. Ultrasound Obstet. Gynecol. 2016; 48(S1): 72-72. https://dx.doi.org/10.1002/uog.16224
- Volpe N., Dall'Asta A., Di Pasquo E., Frusca T., Ghi T. First-trimester fetal neurosonography: technique and diagnostic potential. Ultrasound Obstet. Gynecol. 2021; 57(2): 204-14. https://dx.doi.org/10.1002/uog.23149
- Ungureanu D.R., Drăgușin R.C., Căpitănescu R.G., Zorilă L., Ofițeru A.M.I., Marinaș C. et al. First trimester ultrasound detection of fetal central nervous system anomalies. Brain Sci. 2023; 13(1): 118. https://dx.doi.org/10.3390/brainsci13010118
- Paladini D., Malinger G., Monteagudo A., Pilu G., Timor-Tritsch I., Toi A. Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound Obstet. Gynecol. 2007; 29(1): 109-16. https://dx.doi.org/10.1002/uog.3909
- Iliescu D., Tudorache S., Comanescu A., Antsaklis P., Cotarcea S., Novac L. et al. Improved detection rate of structural abnormalities in the first trimester using an extended examination protocol. Ultrasound Obstet. Gynecol. 2013; 42(3): 300-9. https://dx.doi.org/10.1002/uog.12489
- Grande M., Arigita M., Borobio V., Jimenez J.M., Fernandez S., Borrell A. First-trimester detection of structural abnormalities and the role of aneuploidy markers. Ultrasound Obstet. Gynecol. 2012; 39(2): 157-63. https://dx.doi.org/10.1002/uog.10070
- Syngelaki A., Chelemen T., Dagklis T., Allan L., Nicolaides K.H. Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11-13 weeks. Prenat. Diagn. 2011; 31(1): 90-102. https://dx.doi.org/10.1002/pd.2642
- Xie H.N., Wang N., He M., Zhang L.H., Cai H.M., Xian J.B. et al. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet. Gynecol. 2020; 56(4): 579-87. https://dx.doi.org/10.1002/uog.21967
- Familiari A., Di Ilio C., Fanelli T., Volpe P., Dall'Asta A., Volpe N. et al. OP02.09: AIRFRAME: artificial intelligence for recognition of fetal brain anomalies from ultrasound images of the first trimester. Ultrasound Obstet. Gynecol. 2024; 64: 64-65. h https://dx.doi.org/10.1002/uog.27891
- Ferreira C., Rouxinol-Dias A.L., Loureiro T., Nicolaides K. Subarachnoid space diameter in chromosomally abnormal fetuses at 11-13 weeks' gestation. J. Matern. Fetal Neonatal Med. 2019; 32(12): 2079-83. https://dx.doi.org/10.1080/14767058.2018.1425833
- Pooh R.K. Three-dimensional evaluation of the fetal brain. Donald School Journal of Ultrasound in Obstetrics & Gynecology. 2017; 11(4): 268-75. https://dx.doi.org/10.5005/jp-journals-10009-1532
Received 26.02.2025
Accepted 15.05.2025
About the Authors
Oksana V. Talolina, doctor-expert at the Department of Ultrasound and Functional Diagnostics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(495)438-22-92, o_talolina@oparina4.ru, o.talolina@mail.ru,https://orcid.org/0000-0001-8031-0962
Liliyana A. Chugunova, PhD, Senior Researcher at the Department of Ultrasound and Functional Diagnosis, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(495)438-22-92, l_chugunova@oparina4.ru
Aleksandr I. Gus, Dr. Med. Sci., Professor, Chief Researcher at the Department of Ultrasound and Functional Diagnostics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4; Head of the Department of Ultrasound Diagnostics of the Faculty of Continuing Medical Education of the Medical Institute, Patrice Lumumba Peoples’ Friendship University of Russia,
+7(495)438-22-92, a_gus@oparina4.ru, https://orcid.org/0000-0003-1377-3128
Corresponding author: Oksana V. Talolinа, o.talolina@mail.ru