Epigenetic regulation of reproductive potential: from folliculogenesis to implantation
Amyan T.S., Patskova P.O., Kurushin N.D., Timofeeva A.V., Gavisova A.A.
Epigenetic regulation plays an important role in the ovarian function. It determines the ovarian response to hormonal stimulation and the embryo implantation potential in assisted reproduction. Epigenetic modifications such as DNA methylation, (de)methylation and (de)acetylation of histone proteins, and changes in expression levels of non-coding RNAs are identified as key factors regulating ovarian function and reproductive outcomes. Changes in the expression levels of microRNAs in follicular fluid and granulosa cells are related to the process of oocyte development, the level of ovarian reserve and the implantation potential of the embryo. miR-27a-3p and miR-15a-5p have been shown to be associated with impaired granulosa cell function and poor ovarian response to ovarian stimulation, while global DNA hypomethylation is associated with ovarian aging. Epigenetic changes affect ovarian function through pathways that control hormone signaling, follicular development and success of implantation. It is necessary to conduct further research to identify ways of practical application of epigenetic modifications as markers for predicting the effectiveness of ART programs and optimizing patient management and treatment.
Conclusion: The results of the review that included recent studies highlight the critical importance of epigenetic factors in predicting the success of assisted reproduction. The studies suggest that epigenetic biomarkers and personalized targeted therapy based on these biomarkers are a promising direction. This approach aims to individualize treatment methods by modifying criteria for embryo culture, ovarian stimulation protocols, and implantation potential parameters.
Authors’ contributions: Amyan T.S., Patskova P.O., Kurushin N.D. – search and analysis of literature, writing the text of the article; Timofeeva A.V., Gavisova А.А. – editing and final approval of the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The research was carried out with the financial support of the Ministry of Health of the Russian Federation within the framework of the state assignment 125022002648-0 on the subject: “Assessment of the blastocyst ploidy and its implantation potential by the level of extracellular piwiRNAs in the culture medium”.
For citation: Amyan T.S., Patskova P.O., Kurushin N.D., Timofeeva A.V., Gavisova A.A.
Epigenetic regulation of reproductive potential: from folliculogenesis to implantation.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (11): 30-37 (in Russian)
https://dx.doi.org/10.18565/aig.2025.170
Keywords
References
- Yu X., Xu J., Song B., Zhu R., Liu J., Liu Y.F. et al. The role of epigenetics in women’s reproductive health: The impact of environmental factors. Front. Endocrinol. (Lausanne). 2024; 15: 1399757. https://dx.doi.org/10.3389/fendo.2024.1399757
- Saftić Martinović L., Mladenić T., Lovrić D., Ostojić S., Dević Pavlić S. Decoding the epigenetics of infertility: mechanisms, environmental influences, and therapeutic strategies. Epigenomes. 2024; 8(3): 34. https://dx.doi.org/10.3390/epigenomes8030034
- Marsh M.L., Oliveira M.N., Vieira-Potter V.J. Adipocyte metabolism and health after the menopause: the role of exercise. Nutrients. 2023; 15(2): 444. https://dx.doi.org/10.3390/nu15020444
- Nitsch S., Zorro Shahidian L., Schneider R. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Rep. 2021; 22(7): e52774. https://dx.doi.org/10.15252/embr.202152774
- Wang J., Sun X., Yang Z., Li S., Wang Y., Ren R. et al. Epigenetic regulation in premature ovarian failure: a literature review. Front. Physiol. 2023; 13: 998424. https://dx.doi.org/10.3389/fphys.2022.998424
- Gong F., Miller K.M. Histone methylation and the DNA damage response. Mutat. Res. Rev. Mutat. Res. 2019; 780: 37-47. https://dx.doi.org/10.1016/j.mrrev.2017.09.003
- Zama A.M., Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front. Neuroendocrinol. 2010; 31(4): 420-39. https://dx.doi.org/10.1016/j.yfrne.2010.06.003
- Сыркашева А.Г., Долгушина Н.В., Яроцкая Е.Л. Влияние антропогенных химических веществ на репродукцию. Акушерство и гинекология. 2018; 3: 16-21. [Syrkasheva A.G., Dolgushina N.V., Yarotskaya E.L. The effect of anthropogenic chemicals on reproduction. Obstetrics and Gynecology. 2018; (3): 16-21 (in Russian)]. https://dx.doi.org/10.18565/aig.2018.3.16-21
- Tricotteaux-Zarqaoui S., Lahimer M., Abou Diwan M., Corona A., Candela P., Cabry R. et al. Endocrine disruptor chemicals exposure and female fertility declining: from pathophysiology to epigenetic risks. Front. Public Health. 2024; 12: 1466967. https://dx.doi.org/10.3389/fpubh.2024.1466967
- Сыркашева А.Г., Киндышева С.В., Стародубцева Н.Л., Франкевич В.Е., Долгушина Н.В. Бисфенол А в организме пациенток с бесплодием: влияние на результаты программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2021; 5: 113-20. [Syrkasheva A.G., Kindysheva S.V., Starodubtseva N.L., Frankevich V.E., Dolgushina N.V. Bisphenol A in infertile patients: impact on assisted reproductive technologies outcomes. Obstetrics and Gynecology. 2021; (5): 113-20 (in Russian)]. https://dx.doi.org/10.18565/aig.2021.5.113-120
- Shi Y.Q., Zhu X.T., Zhang S.N., Ma Y.F., Han Y.H., Jiang Y. et al. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front. Endocrinol. (Lausanne). 2023; 14: 1172481. https://dx.doi.org/10.3389/fendo.2023.1172481
- Throwba H.P.K., Unnikrishnan L., Pangath M., Vasudevan K., Jayaraman S., Li M. et al. The epigenetic correlation among ovarian cancer, endometriosis, and PCOS: a review. Crit. Rev. Oncol. Hematol. 2022; 180: 103852. https://dx.doi.org/10.1016/j.critrevonc.2022.103852
- Mani S., Srivastava V., Shandilya C., Kaushik A., Singh K.K. Mitochondria: the epigenetic regulators of ovarian aging and longevity. Front. Endocrinol. (Lausanne). 2024; 15: 1424826. https://dx.doi.org/10.3389/fendo.2024.1424826
- Ju W., Zhao Y., Yu Y., Zhao S., Xiang S., Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front. Endocrinol. (Lausanne). 2024; 15: 1361289. https://dx.doi.org/10.3389/fendo.2024.1361289
- Xiao C., Fan T., Zheng Y., Tian H., Deng Z., Liu J. et al. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J. Immunother. Cancer. 2023; 11(8): e005693. https://dx.doi.org/10.1136/jitc-2022-005693
- Wu J., Liu Y., Song Y., Wang L., Ai J., Li K. Aging conundrum: a perspective for ovarian aging. Front. Endocrinol. (Lausanne). 2022; 13: 952471. https://dx.doi.org/10.3389/fendo.2022.952471
- Wang L., Xu Z., Khawar M.B., Liu C., Li W. The histone codes for meiosis. Reproduction. 2017; 154(3): R65-79. https://dx.doi.org/10.1530/REP-17-0153
- Ratti M., Lampis A., Ghidini M., Salati M., Mirchev M.B., Valeri N. et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target. Oncol. 2020; 15(3): 261-78. https://dx.doi.org/10.1007/s11523-020-00717-x
- Shen X., Chen C., Wang Y., Zheng W., Zheng J., Jones A.E. et al. Role of histone variants H2BC1 and H2AZ.2 in H2AK119ub nucleosome organization and polycomb gene silencing. bioRxiv. 2024: Preprint. https://dx.doi.org/10.1101/2024.01.16.575234
- Usman M., Li A., Wu D., Qinyan Y., Yi L.X., He G. et al. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res. 2023; 9(1): 165-77. https://dx.doi.org/10.1016/j.ncrna.2023.11.008
- ElMonier A.A., El-Boghdady N.A., Fahim S.A., Sabry D., Elsetohy K.A., Shaheen A.A. LncRNA NEAT1 and MALAT1 are involved in polycystic ovary syndrome pathogenesis by functioning as competing endogenous RNAs to control the expression of PCOS-related target genes. Noncoding RNA Res. 2023; 8(2): 263-71. https://dx.doi.org/10.1016/j.ncrna.2023.02.008
- Loubalova Z., Konstantinidou P., Haase A.D. Themes and variations on piRNA-guided transposon control. Mob. DNA. 2023; 14(1): 10. https://dx.doi.org/10.1186/s13100-023-00298-2
- Azhar S., Dong D., Shen W.J., Hu Z., Kraemer F.B. The role of miRNAs in regulating adrenal and gonadal steroidogenesis. J. Mol. Endocrinol. 2020; 64(1): R21-43. https://dx.doi.org/10.1530/JME-19-0105
- Sahafnejad Z., Ramazi S., Allahverdi A. An update of epigenetic drugs for the treatment of cancers and brain diseases: a comprehensive review. Genes. 2023; 14(4): 873. https://dx.doi.org/10.3390/genes14040873
- Rapani A., Nikiforaki D., Karagkouni D., Sfakianoudis K., Tsioulou P., Grigoriadis S. et al. Reporting on the role of miRNAs and affected pathways on the molecular backbone of ovarian insufficiency: a systematic review and critical analysis mapping of future research. Front. Cell Dev. Biol. 2021; 8: 590106. https://dx.doi.org/10.3389fcell.2020.590106
- Zhang K., Zhong W., Li W.P., Chen Z.J., Zhang C. miR-15a-5p levels correlate with poor ovarian response in human follicular fluid. Reproduction. 2017; 154(4): 483-96. https://dx.doi.org/10.1530/REP-17-0157
- Eisenberg I., Nahmias N., Novoselsky Persky M., Greenfield C., Goldman-Wohl D., Hurwitz A. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil. Steril. 2017; 107(1): 269-75. https://dx.doi.org/10.1016/j.fertnstert.2016.10.003
- Chen C.H., Lu F., Yang W.J., Yang P.E., Chen W.M., Kang S.T. et al. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertil. Steril. 2021; 116(1): 181-8. https://dx.doi.org/10.1016/j.fertnstert.2021.01.055
- Wang M., Sun J., Xu B., Chrusciel M., Gao J., Bazert M. et al. Functional characterization of MicroRNA-27a-3p expression in human polycystic ovary syndrome. Endocrinology. 2018; 159(1): 297-309. https://dx.doi.org/10.1210/en.2017-00219
- Battaglia R., Musumeci P., Ragusa M., Barbagallo D., Scalia M., Zimbone M. et al. Ovarian aging increases small extracellular vesicle CD81+ release in human follicular fluid and influences miRNA profiles. Aging. 2020; 12(12): 12324-41. https://dx.doi.org/10.18632/aging.103441
- Li L., Shi X., Shi Y., Wang Z. The signaling pathways involved in ovarian follicle development. Front. Physiol. 2021; 12: 730196. https://dx.doi.org/10.3389/fphys.2021.730196
- Тимофеева A.В., Федоров И.С., Савостина Г.В., Екимов А.Н., Перминова С.Г. Количественный анализ piwiРНК в среде культивирования эуплоидных и анеуплоидных бластоцист как вспомогательный способ отбора качественного эмбриона для переноса в полость матки в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2023; 11: 115-30. [Timofeeva A.V., Fedorov I.S., Savostina G.V., Ekimov A.N., Perminova S.G. Quantitative analysis of piwiRNAs in the culture medium of euploid and aneuploid blastocysts as an additional method of selecting a high-quality embryo for transfer to the uterine cavity in assisted reproductive technology programs. Obstetrics and Gynecology. 2023; (11): 115-30 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.180
- Joseph D.B., Strand D.W., Vezina C.M. DNA methylation in development and disease: An overview for prostate researchers. Am. J. Clin. Exp. Urol. 2018; 6(6): 197-218.
- Tang Y., Gan H., Wang B., Wang X., Li M., Yang Q. et al. Mediating effects of DNA methylation in the association between sleep quality and infertility among women of childbearing age. BMC Public Health. 2023; 23(1): 1802. https://dx.doi.org/10.1186/s12889-023-16681-w
- Chen W., Dong L., Wei C., Wu H. Role of epigenetic regulation in diminished ovarian reserve. J. Assist. Reprod. Genet. 2024; 42(2): 389-403. https://dx.doi.org/10.1007/s10815-024-03301-8
- Glaviano A., Foo A.S.C., Lam H.Y., Yap K.C.H., Jacot W., Jones R.H. et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer. 2023; 22(1): 138. https://dx.doi.org/10.1186/s12943-023-01827-6
- Pelosi E., Omari S., Michel M., Ding J., Amano T., Forabosco A. et al. Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Nat. Commun. 2013; 4: 1843. https://dx.doi.org/10.1038/ncomms2861
- Olsen K.W., Castillo-Fernandez J., Chan A.C., la Cour Freiesleben N., Zedeler A., Bungum M. et al. Identification of a unique epigenetic profile in women with diminished ovarian reserve. Fertil. Steril. 2021; 115(3): 732-41. https://dx.doi.org/10.1016/j.fertnstert.2020.09.009
- Liu R., Wu J., Guo H., Yao W., Li S., Lu Y. et al. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm. 2023; 4(3): e292. https://dx.doi.org/10.1002/mco2.292
- Handy D.E., Castro R., Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011; 123(19): 2145-56. https://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839
- Zhu Z., Xu W., Liu L. Ovarian aging: Mechanisms and intervention strategies. Med. Rev. 2022; 2(6): 590-610. https://dx.doi.org/10.1515/mr-2022-0031
- Xue P., Zhou W., Fan W., Jiang J., Kong C., Zhou W. et al. Increased METTL3-mediated m6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure. Reprod. Biol. Endocrinol. 2021; 19(1): 187. https://dx.doi.org/10.1186/s12958-021-00872-4
- Sciorio R., El Hajj N. Epigenetic risks of medically assisted reproduction. J. Clin. Med. 2022; 11(8): 2151. https://dx.doi.org/10.3390/jcm11082151
- Yang S.C., Park M., Hong K.H., La H., Park C., Wang P. et al. CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis. Nat. Commun. 2023; 14(1): 3220. https://dx.doi.org/10.1038/s41467-023-39008-0
- MacLean J.A., Hayashi K. Progesterone actions and resistance in gynecological disorders. Cells. 2022; 11(4): 647. https://dx.doi.org/10.3390/cells11040647
- Sindik N., Pereza N., Dević Pavlić S. Epigenetics of oogenesis. Arch. Gynecol. Obs. 2024; 311(2): 183-90. https://dx.doi.org/10.1007/s00404-024-07882-8
- Chico-Sordo L., García-Velasco J.A. MicroRNAs as biomarkers and therapeutic targets in female infertility. Int. J. Mol. Sci. 2024; 25(23): 12979. https://dx.doi.org/10.3390/ijms252312979
- Тимофеева А.В., Федоров И.С., Гохберг Я.А., Калинина Е.А. Оценка рецептивности эндометрия по уровню малых некодирующих РНК в маточном аспирате у женщин на фоне циклической гормональной терапии. Акушерство и гинекология. 2023; 7: 90-102. [Timofeeva A.V., Fedorov I.S., Gokhberg Ya.A., Kalinina E.A. Evaluation of endometrial receptivity using the level of small non-coding RNAs in uterine aspirate from women undergoing cyclic hormone therapy. Obstetrics and Gynecology. 2023; (7): 90-102 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.110
- Шамина М.А., Тимофеева А.В., Калинина Е.А. Малые некодирующие РНК и их потенциальная роль в оценке фертильности супружеской пары в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2019; 11: 33-9. [Shamina M.A., Timofeeva A.V., Kalinina E.A. Small non-coding RNAs and their potential role in assessing the fertility of a married couple in assisted reproductive technology programs. Obstetrics and Gynecology. 2019; (11): 33-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.11.33-39
- Тимофеева А.В., Калинина Е.А., Драпкина Ю.С., Чаговец В.В., Макарова Н.П., Сухих Г.Т. Оценка качества эмбриона по профилю экспрессии малых некодирующих РНК в культуральной среде эмбриона в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2019; 6: 79-86. [Timofeeva A.V., Kalinina E.A., Drapkina Yu.S., Chagovets V.V., Makarova N.P., Sukhikh G.T. Embryo quality assessment by the small noncoding RNA expression profile in an embryo culture medium in assisted reproductive technology programs. Obstetrics and Gynecology. 2019; (6): 79-86 (in Russian)]. http://dx.doi.org/10.18565/aig.2019.6.79-86
Received 24.06.2025
Accepted 13.11.2025
About the Authors
Tatiana S. Amyan, PhD, gynaecologist, 1st Gynecological Departament of the Institute of Reproductive Medicine, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(926)163-28-33, t_amyan@oparina4.ru,https://orcid.org/0009-0004-3772-2346
Polina O. Patskova, PhD student, 1st Gynecological Departament of the Institute of Reproductive Medicine, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(915)639-66-06, p_patskova@oparina4.ru,
https://orcid.org/0009-0005-6805-2944
Nikita D. Kurushin, PhD student, 1st Gynecological Departament of the Institute of Reproductive Medicine, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(926)159-13-03, kurushinniko@gmail.com,
https://orcid.org/0009-0009-9956-1724
Angelika V. Timofeeva, PhD (Bio), Head of the Laboratory of Applied Transcriptomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, +7(917)5165167, v_timofeeva@oparina4.ru,
https://orcid.org/0000-0003-2324-9653
Alla A. Gavisova, Dr. Med. Sci., Head of the 1st Gynecological Departament of the Institute of Reproductive Medicine, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, a_gavisova@oparina4.ru,
https://orcid.org/0000-0003-4700-2786



