ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

Genital anomalies in patients with trichorhinophalangeal syndrome

Tsabai P.N., Rogacheva M.S., Batyrova Z.K., Lapshina A.M., Uvarova E.V., Shubina J., Trofimov D.Yu.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

Background: Congenital malformations of the genital organs represent a range of anatomical variants leading to dysfunction due to complete or partial organ obstruction. Genetic causes of reproductive tract anomalies include chromosomal and monogenic disorders, as well as syndromic ones. Trichorhinophalangeal syndrome (TRFS) is a rare autosomal dominant disease characterized by craniofacial and skeletal anomalies.
Objective: To study the genetic causes of a vaginal malformation in a patient with TRPS and to review cases of genital anomalies in patients with TRPS.
Case report: A 12-year patient was admitted for surgical correction of a genital anomaly, namely distal vaginal atresia. Shortened limbs, brachydactyly, and slow growth were noted from an early age. The patient underwent whole-exome sequencing, and her parents were examined using Sanger sequencing. The patient was found to have a pathogenic heterozygous variant in the TRPS1 gene, resulting in an amino acid substitution at position 932 of the protein (NM_014112.5: c.2795C>T, p.Ala932Val). The variant was not detected in the parents; it arose de novo. This case is the only molecularly confirmed case of TRPS type 3 with vaginal malformations and the second description of the syndrome in the Russian scientific literature. Female reproductive system defects are not among the classic features of TRPS; however, we found isolated reports of genital anomalies in patients of both sexes.
Conclusion: Our observation confirms that genital anomalies are a part of the phenotypic spectrum of TRPS. We highlight the need for gynecological examination of all adolescent girls diagnosed with TRPS to ensure early detection of genital malformations.

Authors’ contributions: Uvarova E.V., Trofimov D.Yu. – developing the concept and design of the study; Tsabai P.N., Batyrova Z.K., Lapshina A.M. – consulting the patients, collecting and processing the material; Rogacheva M.S., Shubina J. – bioinformatics analysis; Tsabai P.N., Rogacheva M.S., Shubina J. – writing the text; Shubina J., Batyrova Z.K. – editing the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: This work was supported by the Russian Science Foundation, Grant No. 25-65-00040.
Ethical Approval: The study was approved by the Ethical Review Board of the Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia (Protocol No. 7 of the meeting of the Ethics Commission for Biomedical Research, dated August 21, 2025).
Patient Consent to Publication: The patient and her parents provided an informed consent to the use of all information including photos for scientific purposes.
For citation: Tsabai P.N., Rogacheva M.S., Batyrova Z.K., Lapshina A.M., Uvarova E.V., Shubina J., 
Trofimov D.Yu. Genital anomalies in patients with trichorhinophalangeal syndrome.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2026; (1): 120-129 (in Russian)
https://dx.doi.org/10.18565/aig.2025.286

Keywords

trichorhinophalangeal syndrome
TRPS1
whole-exome sequencing
genital anomalies
vaginal atresia
short stature

References

  1. Аракелян А.С., Попрядухин А.Ю., Карапетян Э.А. Сочетанные пороки развития в гинекологии. Анализ 1530 клинических наблюдений. (Собственный материал). Российский вестник акушера-гинеколога. 2021; 21(4): 88‑93. [Arakelyan A.S., Popryadukhin A.Yu., Karapetyan E.A. Concomitant malformations in gynecology. Analysis of 1530 clinical observations. (Own material). Russian Bulletin of Obstetrician-Gynecologist. 2021; 21(4): 88‑93 (in Russian)]. https://dx.doi.org/10.17116/rosakush20212104188
  2. Acién P., Navarro V., Acién M. Embryological-clinical classification of female genital tract malformations – a review and update. Reprod. BioMed. Online 2025; 51(1): 104751. https://dx.doi.org/10.1016/j.rbmo.2024.104751
  3. Lin X., Kang J., Zhu L. Recent advances in vaginal atresia: a literature review. Biomedicines. 2025; 13(1): 128. https://dx.doi.org/10.3390/biomedicines13010128
  4. Chu C., Li L., Lu D., Duan A.-H., Luo L.-J., Li S. et al. Whole-exome sequencing identified a TBX6 loss of function mutation in a patient with distal vaginal atresia. J. Pediatr. Adolesc. Gynecol. 2019; 32(5): 550-4. https://dx.doi.org/10.1016/j.jpag.2019.06.006
  5. Kang J., Zhou Q., Chen N., Liu Z., Zhang Y., Sun J. et al. Clinical and genetic characteristics of a cohort with distal vaginal atresia. Int. J. Mol. Sci. 2022; 23(21): 12853. https://dx.doi.org/10.3390/ijms232112853
  6. Gomes A., Karamcheti S., Rodriguez Á.M., Niemi A., Bird L.M. Intestinal atresia in PPP1R12A‐related urogenital and brain malformation syndrome. Am. J. Med. Genet. A. 2025; 197: e64217. https://dx.doi.org/10.1002/ajmg.a.64217
  7. Su W.R., Wang P.H., Lian J.D., Lin M.C.J. Oral-facial-digital syndrome with vaginal atresia, hydronephrosis and congenital cardiac defect. J. Pediatr. Orthop. B. 2008; 17(4): 179-82. https://dx.doi.org/10.1097/BPB.0b013e3282ff4f77
  8. Poley J.R., Proud V.K. Hardikar syndrome: new features. Am. J. Med. Genet. A. 2008; 146A(19): 2473-9. https://dx.doi.org/10.1002/ajmg.a.32266
  9. Herlin L.K., Herlin M.K., Blechingberg J., Rønholt K., Graversen L., Schmidt S.A.J. et al. Clinical presentation and genetics of tricho-rhino-phalangeal syndrome (TRPS) type 1: a single-center case series of 15 patients and seven novel TRPS1 variants. Eur. J. Med. Genet. 2024; 69: 104937. https://dx.doi.org/10.1016/j.ejmg.2024.104937
  10. Maas S.M., Shaw A.C., Bikker H., Lüdecke H.-J., Van Der Tuin K., Badura-Stronka M. et al. Phenotype and genotype in 103 patients with tricho-rhino-phalangeal syndrome. Eur. J. Med. Genet. 2015; 58(5): 279-92. https://dx.doi.org/10.1016/j.ejmg.2015.03.002
  11. Foryś-Dworniczak E., Zajdel-Cwynar O., Kalina-Faska B., Małecka-Tendera E., Matusik P. Trichorhinophalangeal syndrome as a diagnostic and therapeutic challenge for paediatric endocrinologists. Pediatr. Endocrinol. Diabetes Metab. 2019; 25(1): 41-7. https://dx.doi.org/10.5114/pedm.2019.84708
  12. Güneş N., Usluer E., Yüksel Ülker A., Uludağ Alkaya D., Çifçi Sunamak E., Celep Eyüpoğlu F. et al. The clinical and molecular spectrum of trichorhinophalangeal syndrome types I and II in a Turkish cohort involving 22 patients. Turk. Arch. Pediatr. 2023; 58(1): 98-104. https://dx.doi.org/10.5152/TurkArchPediatr.2022.22223
  13. Ellison E., Grampp S.J., Ellison S., Seeley A., Seeley M. Trichorhinophalangeal syndrome orthopaedic manifestations and management: a systematic review. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2024; 8(8): e24.00010. https://dx.doi.org/10.5435/JAAOSGlobal-D-24-00010
  14. Levy-Shraga Y., Modan-Moses D., Wientroub S., Ovadia D., Zeitlin L. The effect of growth hormone treatment in a child with tricho-rhino-phalangeal syndrome: a case report and review of the literature. Eur. J. Med. Genet. 2020; 63(4): 103830. https://dx.doi.org/10.1016/j.ejmg.2019.103830
  15. Favilla B.P., Burssed B., Yamashiro Coelho É.M., Perez A.B.A., De Faria Soares M.D.F., Meloni V.A. et al. Minimal critical region and genes for a typical presentation of Langer–Giedion syndrome. Cytogenet. Genome Res. 2022; 162(1-2): 46-54. https://dx.doi.org/10.1159/000522034
  16. Lüdecke H.J., Schaper J., Meinecke P., Momeni P., Groß S., Von Holtum D. et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am. J. Hum. Genet. 2001; 68(1): 81-91. https://dx.doi.org/10.1086/316926
  17. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., Афанасьев А.А., Заклязьминская Е.В., Ребриков Д.В., Савостьянов К.В., Глотов А.С., Костарева А.А., Павлов А.Е., Голубенко М.В., Поляков А.В., Куцев С.И. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2020; 18(2): 3-23. [Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Rebrikov D.V., Savostianov K.V., Glotov A.S., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2). Medical genetics. 2019; 18(2): 3-23 (in Russian)]. https://dx.doi.org/10.25557/2073-7998.2019.02.3-23
  18. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the Association for molecular pathology. Genet. Med. 2015; 17(5): 405-24. https://dx.doi.org/10.1038/gim.2015.30
  19. Мун А.В., Салихова М.С. Клинический случай трихоринофалангеального синдрома III типа. Дерматовенерология Косметология. 2025; 11(2): 210-5. [Mun A., Salikhova M. Clinical case of trichorinophalangeal syndrome type III. Dermatovenereology Cosmetology. 2025; 11(2): 210-5 (in Russian)]. https://dx.doi.org/10.34883/PI.2025.11.2.018
  20. Minemura R., Sugitate R., Shimizu M., Murata T., Ishige T., Takizawa T. Trichorhinophalangeal syndrome type I associated with imperforate hymen. Pediatr. Int. 2023; 65(1): e15679. https://dx.doi.org/10.1111/ped.15679
  21. Braga D., Manganoni A.M., Gavazzoni R., Pasolini G., De Panfilis G. A case of trichorhinophalangeal syndrome, type I. Cutis. 1994; 53(2): 92-4.
  22. Graybeal L.S., Baum V.C., Durieux M.E. Anaesthetic management of a patient with tricho-rhino-phalangeal syndrome. Eur. J. Anaesthesiol. 2005; 22(5):400-2. https://dx.doi.org/10.1017/S0265021505270679
  23. Schinzel A., Riegel M., Baumer A., Superti‐Furga A., Moreira L.M.A., Santo L.D.E. et al. Long‐term follow‐up of four patients with Langer – Giedion syndrome: clinical course and complications. Am. J. Med. Genet. A. 2013; 161A(9): 2216-25. https://dx.doi.org/10.1002/ajmg.a.36062
  24. Öztürk N., Karamık G., Mutlu H., Bayer Ö.Y., Mıhçı E., Çetin G.O. et al. Expanding the clinical and molecular features of trichorhino- phalangeal syndrome with a novel variant. Turk. J. Pediatr. 2023; 65(1): 81-95. https://doi.org/10.24953/turkjped.2022.793
  25. Tüysüz B., Güneş N., Alkaya D.U. Trichorhinophalangeal syndrome. In: Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Amemiya A., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993.
  26. Gai Z., Gui T., Muragaki Y. The function of TRPS1 in the development and differentiation of bone, kidney, and hair follicles. Histol. Histopathol. 2011; 26(7): 915-21. https://dx.doi.org/10.14670/HH-26.915
  27. Momeni P., Glöckner G., Schmidt O., von Holtum D., Albrecht B., Gillessen-Kaesbach G. et al. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat. Genet. 2000; 24(1): 71-4. https://dx.doi.org/10.1038/71717
  28. Liu Y., Xu S., Lian X., Su Y., Zhong Y., Lv R. et al. Atypical GATA protein TRPS1 plays indispensable roles in mouse two-cell embryo. Cell Cycle 2019; 18(39): 437-51. https://dx.doi.org/10.1080/15384101.2019.1577650
  29. Piscopo D.M., Johansen E.B., Derynck R. Identification of the GATA Factor TRPS1 as a repressor of the osteocalcin promoter. J. Biol. Chem. 2009; 284(46): 31690-703. https://dx.doi.org/10.1074/jbc.M109.052316
  30. Mohiuddin M., Kooy R.F., Pearson C.E. De novo mutations, genetic mosaicism and human disease. Front. Genet. 2022; 13: 983668. https://dx.doi.org/10.3389/fgene.2022.983668
  31. Corsini C., Gencik M., Willems M., Decker E., Sanchez E., Puechberty J. et al. Somatic mosaicism in trichorhinophalangeal syndrome: a lesson for genetic counseling. Eur. J. Hum. Genet. 2014; 22(1): 136-9. https://dx.doi.org/10.1038/ejhg.2013.56
  32. Ramos F.J., McDonald‐McGinn D.M., Emanuel B.S., Zackai E.H. Tricho‐Rhino‐Phalangeal syndrome type II (Langer‐Giedion) with persistent cloaca and prune belly sequence in a girl with 8q interstitial deletion. Am. J. Med. Genet. 1992; 44(6): 790-4. https://dx.doi.org/10.1002/ajmg.1320440614
  33. Partington M.W., Rae J., Payne M.J. Haematometra in the Langer – Giedion syndrome. J. Med. Genet. 1991; 28(9): 644-5. https://dx.doi.org/10.1136/jmg.28.9.644-b
  34. Fryns J.P., Heremans G., Marien J., Van Den Berghe H. Langer–Giedion syndrome and deletion of the long arm of chromosome 8. Confirmation of the critical segment to 8q23. Hum. Genet. 1983; 64(2): 194-5. https://dx.doi.org/10.1007/BF00327126
  35. Plaza-Benhumea L., Valdes-Miranda J.M., Toral-López J., Pérez-Cabrera A., Cuevas-Covarrubias S. Trichorhinophalangeal syndrome type II due to a novel 8q23.3-q24.12 deletion associated with imperforate hymen and vaginal stenosis. Br. J. Dermatol. 2014; 171(6): 1581-3. https://dx.doi.org/10.1111/bjd.13177
  36. Батырова З.К., Большакова А.С., Кумыкова З.Х., Кругляк Д.А., Уварова Е.В., Чупрынин В.Д., Мамедова Ф.Ш., Саделов И.О., Д.Ю. Трофимов Д.Ю. Редкий случай сочетания трихоринофалангеального синдрома и синдрома Майера-Рокитанского-Кюстера-Хаузера. Вестник РГМУ. 2023; 3: 17-22. [Batyrova Z.K., Bolshakova A.S., Kumykova Z.Kh., Kruglyak D.A., Uvarova E.V., Chuprynin V.D., Mamedova F.Sh., Sadelov I.O., Trofimov D.Yu. A rare case of combination trichorinophalangeal syndrome and Mayer-Rokitansky-Küster-Hauser syndrome. Bulletin of RSMU. 2023; 3: 17-22 (in Russian)]. https://dx.doi.org/10.24075/vrgmu.2023.022
  37. Hilton M.J., Sawyer J.M., Gutiérrez L., Hogart A., Kung T.C., Wells D.E. Analysis of novel and recurrent mutations responsible for the tricho-rhino-phalangeal syndromes. J. Hum. Genet. 2002; 47(3): 103-6. https://dx.doi.org/10.1007/s100380200010
  38. Kantaputra P., Miletich I., Lüdecke H.-J., Suzuki E.Y., Praphanphoj V., Shivdasani R. et al. Tricho-rhino-phalangeal syndrome with supernumerary teeth. J. Dent. Res. 2008; 87(11): 1027-31. https://dx.doi.org/10.1177/154405910808701102
  39. Tasic V., Gucev Z., Ristoska-Bojkovska N., Janchevska A., Lüdecke H.J. Tricho-rhino-phalangeal syndrome in a 13-year-old girl with chronic renal failure and severe growth retardation. Renal Failure 2014; 36(4): 619-22. https://dx.doi.org/10.3109/0886022X.2014.882237
  40. Van Der Ven A.T., Connaughton D.M., Ityel H., Mann N., Nakayama M., Chen J. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 2018; 29(9): 2348-61. https://dx.doi.org/10.1681/ASN.2017121265
  41. Al‐Hamed M.H., Hussein M.H., Shah Y., Al‐Mojalli H., Alsabban E., Alshareef T. et al. Exome sequencing unravels genetic variants associated with chronic kidney disease in Saudi Arabian patients. Hum. Mutat. 2022; 43(12): e24-e37. https://dx.doi.org/10.1002/humu.24480
  42. Smaili W., Elalaoui S.C., Meier S., Zerkaoui M., Sefiani A., Heinimann K. A novel TRPS1 mutation in a Moroccan family with Tricho-rhino-phalangeal syndrome type III: case report. BMC Med. Genet. 2017; 18(1): 50. https://dx.doi.org/10.1186/s12881-017-0413-8
  43. Sugio Y., Kajii T. Ruvalcaba syndrome: autosomal dominant inheritance. Am. J. Med. Genet. 1984; 19(4): 741-53. https://dx.doi.org/10.1002/ajmg.1320190414
  44. Su W., Shi X., Lin M., Huang C., Wang L., Song H. et al. Non-ossifying fibroma with a pathologic fracture in a 12-year-old girl with tricho-rhino-phalangeal syndrome: a case report. BMC Med. Genet. 2018; 19(1): 211. https://dx.doi.org/10.1186/s12881-018-0732-4

Received 09.10.2025

Accepted 29.12.2025

About the Authors

Polina N. Tsabai, geneticist, M.D., Department of Clinical Genetics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, +7(916)940-22-06, polinatsabai@gmail.com, https://orcid.org/0000-0001-5110-0827
Margarita S. Rogacheva, Junior Researcher, Genomic Data Analysis Laboratory, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, m_rogacheva@oparina4.ru, https://orcid.org/0000-0002-2495-2554
Zalina K. Batyrova, gynecologist, M.D., Department of Children and Adolescent Gynecology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, linadoctor@mail.ru,
https://orcid.org/0000-0003-4997-6090
Anna M. Lapshina, geneticist, M.D., Department of Clinical Genetics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, a_lapshina@oparina4.ru, https://orcid.org/0009-0002-6408-5747
Elena V. Uvarova, Dr. Med. Sci., Professor, Head of Department of Pediatric and Adolescent Gynecology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, elena-uvarova@yandex.ru,
https://orcid.org/0000-0002-3105-5640
Jekaterina Shubina, PhD, Head of the Laboratory of Genomic Data Analysis, Institute of Reproductive Genetics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, e_shubina@oparina4.ru,
https://orcid.org/0000-0003-4383-7428
Dmitry Yu. Trofimov, Dr. Bio. Sci., Corresponding Member of the RAS, Director of Institute of Reproductive Genetics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, 4, Ac. Oparina str., Moscow, Russia, 117997, molgen@bk.ru,
https://orcid.org/0000-0002-1569-8486.
Corresponding author: Polina N. Tsabai, polinatsabai@gmail.com

Similar Articles