Fetal growth retardation in the context of fetal programming

Soldatova E.E., Kan N.E., Tyutyunnik V.L., Volochaeva M.V.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
Current literature data on the role of fetal programming in fetal growth retardation are analyzed. The paper considers the mechanisms and scientific hypotheses of fetal programming, which lead to the formation of a predisposition in children to metabolic, endocrine, and cardiovascular diseases just in adulthood. It discusses the role of the growth hormone–insulin-like growth factor axis in fetal programming and its relationship between fetal growth retardation and obesity, diabetes mellitus, and hypertension. The paper describes a pregnant woman’s exposure to various adverse environmental factors and their influence on the expression of the genes responsible for the synthesis of the hormones that regulate energy metabolism. A special role is assigned to epigenetic mechanisms. The latter manifest themselves as responses to certain negative prenatal factors, form the basis for fetal programming, determine not only the final weight and growth rates for the newborn, but also form the latter’s predisposition to various diseases.
Conclusion: Emerging information about the role of fetal programming in the development of certain diseases in adult life may become an important driving force in an attempt to stop the incidence rate of this pathology.

Keywords

fetal growth retardation
fetal programming
epigenetics
thrifty phenotype

References

  1. Макаров И.О., Юдина Е.В., Боровкова Е.И. Задержка роста плода. Врачебная тактика. Учебное пособие. 3-е изд. М.: МЕДпресс-информ; 2016. 56с. [Makarov I.O., Yudina E.V., Borovkova E.I. Fetal growth retardation. medical tactics. Tutorial. 3rd ed. Moscow: MEDpress-inform 2012. 56 p.(in Russian)].
  2. Fernandez-Twinn D.S., Constancia M., Ozanne S.E. Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin. Cell Dev. Biol. 2015; 43: 85-95. https://dx.doi.org/10.1016/j.semcdb.2015.06.006.
  3. Стрижаков А.Н., Мирющенко М.И., Игнатко И.В., Попова Н.Г., Флорова В.С., Кузнецов А.С. Прогнозирование синдрома задержки роста плода у беременных высокого риска. Акушерство и гинекология. 2017; 7: 34-44. [Strizhakov A.N., Miryushchenko M.M., Ignatko I.V., Popova N.G., Florova V.S., Kuznetsov A.S. Prediction of fetal growth restriction in high-risk pregnant women. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; 7: 34-44. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.7.34-44.
  4. RCOG. The investigation and management of the small-for-gestational-age fetus. Green-top Guideline. No. 31. London: RCOG; 2013.
  5. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Недостаточный рост плода, требующий предоставления медицинской помощи (задержка роста плода). М.; 2021. 71с. [Insufficient fetal growth requiring medical attention (fetal growth retardation). Clinical guidelines. Ministry of Health of the Russian Federation. Moscow; 2021. 71 p. (in Russian)].
  6. Schulman S. Recent advances in thrombosis and hemostasis-Part VII. Semin. Thromb. Hemost. 2021; 47(6): 621-2. https://dx.doi.org/10.1055/s-0041-1725945.
  7. Савельева Г.М., Сухих Г.Т., Серов В.Н., Радзинский В.Е., ред. Акушерство. Национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2022. 1080с. [Savelieva G.M., Sukhikh G.T., Serov V.N., Radzinsky V.E. Obstetrics: National guide. 2nd ed., revised and additional. M.: GEOTAR-Media; 2022. 1080 p. (Series «National Guidelines»). (in Russian)].
  8. Marciniak A., Patro-Małysza J., Kimber-Trojnar Ż., Marciniak B., Oleszczuk J., Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan. J. Obstet. Gynecol. 2017; 56(2): 133-8. https://dx.doi.org/10.1016/j.tjog.2017.01.001.
  9. Железова М.Е., Зефирова Т.А., Канюков С.С. Задержка роста плода: современные подходы к диагностике и ведению беременности. Практическая медицина. 2019; 17(4): 8-14. [Zhelezova M.E., Zefirova T.A., Kanyukov S.S. Fetal growth restriction: modern approaches to the diagnosis and management of pregnancy. Practical medicine. 2019; 17(4): 8-14. (in Russian)].https://dx.doi.org/10.32000/2072-1757-2019-4-8-14.
  10. Barker D.J., Bull A.R., Osmond C., Simmonds S.J. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990; 301(6746): 259-62.https://dx.doi.org/10.1136/bmj.301.6746.259.\
  11. Hershkovitz R., Kingdom J.C., Geary M., Rodeck C.H. Fetal cerebral blood flow fetuses with normal umbilical artery Doppler. Ultrasound Obstet. Gynecol. 2000; 15(3): 209-12. https://dx.doi.org/10.1046/j.1469-0705.2000.00079.x.
  12. Петров Ю.А., Купина А.Д. Фетальное программирование – способ предупреждения заболеваний во взрослом возрасте. Медицинский cовет. 2020; 13: 50-6. [Petrov Yu.A., Kupina A.D. Fetal programming is a way to prevent diseases in adulthood (literature review). Meditsinskiy sovet/Medical Council. 2020; 13: 50-6. (in Russian)]. https://dx.doi.org/10.21518/2079-701X-2020-13-50-56.
  13. Barker D.J., Osmond C. Infant mortality, childhood nutrition, and ischemic heart disease in England and Wales. Lancet. 1986; 1(8489): 1077-81.https://dx.doi.org/10.1016/s0140-6736(86)91340-1.
  14. Kwon E.J., Kim Y.J. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017; 60(6): 506-19.https://dx.doi.org/10.5468/ogs.2017.60.6.506.
  15. Джобава Э.М. Фетальное программирование. Акушерство и гинекология. 2018; 3: 10-5. [Jobava E.M. Fetal programming. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; 7: 10-5. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.3.10-15.
  16. Perrone S., Santacroce A., Picardi A., Buonocore G. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases. World J. Clin. Pediatr. 2016; 5(2): 172-81. https://dx.doi.org/10.5409/wjcp.v5.i2.172.
  17. Ornoy A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod. Toxicol. 2011; 32(2): 205-12.https://dx.doi.org/10.1016/j.reprotox.2011.05.002.
  18. Цывьян П.Б., Ковтун О.П. Внутриутробное программирование заболеваний детей и взрослых. Успехи физиологических наук. 2008; 3(1): 68-75. [Tsyvyan P.B., Kovtun O.P. Intrauterine programming of diseases in children and adults. Advances in the physiological sciences. 2008; 3(1): 68-75 (in Russian)].
  19. Albertsson-Wikland K., Boguszewski M., Karlberg J. Children born small-for-gestational age: postnatal growth and hormonal status. Horm. Res. 1998; 49(Suppl. 2): 7-13. https://dx.doi.org/10.1159/000053080.
  20. Ковтун О.П., Цывьян П.Б. Эпигенетические механизмы внутриутробного программирования заболеваний детей и взрослых. Российский вестник перинатологии и педиатрии. 2009; 2: 72-6. [Kovtun O.P., Tsyvyan P.B. Epigenetic mechanisms of intrauterine programming of diseases in children and adults. Rossiyskiy Vestnik Perinatologii i Pediatrii/Russian Bulletin of Perinatology and Pediatrics. 2009; 2: 72-6 (in Russian)].
  21. West-Eberhard M.J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 1989; 20: 249-78.
  22. Gluckman P.D., Hanson M.A. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr. Res. 2004; 56(3): 311-7. https://dx.doi.org/10.1203/01.PDR.0000135998.08025.FB.
  23. Karlberg J.P., Albertsson-Wikland K., Kwan E.Y., Lam B.C., Low L.C. The timing of early postnatal catch-up growth in normal, full-term infants born short for gestational age. Horm. Res. 1997; 48(Suppl. 1): 17-24. https://dx.doi.org/10.1159/000191279.
  24. Леонова И.А., Иванов Д.О. Фетальное программирование и ожирение у детей. Детская медицина Северо-Запада. 2015; 6(3): 28-41. [Leonova I.A., Ivanov D.O. Fetal programming and obesity in children. Children's medicine of the North-West. 2015; 6(3): 28-41. (in Russian)].
  25. Hattersley A.T., Tooke J.E. The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet. 1999; 353(9166): 1789-92. https://dx.doi.org/10.1016/S0140-6736(98)07546-1.
  26. Neel J.V. Diabetes mellitus: a «thrifty» genotype rendered detrimental by «progress»? 1962. Bull. World Health Organ. 1999; 77(8): 694-703; discussion 692-3.
  27. Barker D.J. The origins of the developmental origins theory. J. Intern. Med. 2007; 261(5): 412-7. https://dx.doi.org/10.1111/j.1365-2796.2007.01809.x.
  28. Garofoli F., Mazzucchelli I., Angelini M., Klersy C., Ferretti V.V., Gardella B. et al. Leptin levels of the perinatal period shape offspring's weight trajectories through the first year of age. Nutrients. 2022; 14(7): 1451. https://dx.doi.org/10.3390/nu14071451.
  29. Stefaniak M., Dmoch-Gajzlerska E. Maternal serum and cord blood leptin concentrations at delivery in normal pregnancies and in pregnancies complicated by intrauterine growth restriction. Obes. Facts. 2022; 15(1): 62-9. https://dx.doi.org/10.1159/000519609.
  30. Fonseca V.M., Sichieri R., Moreira M.E., Moura A.S. Early postnatal growth in preterm infants and cord blood leptin. J. Perinatol. 2004; 24(12): 751-6.https://dx.doi.org/10.1038/sj.jp.7211188.
  31. Karakosta P., Roumeliotaki T., Chalkiadaki G., Sarri K., Vassilaki M., Venihaki M. et al. Cord blood leptin levels in relation to child growth trajectories. Metabolism. 2016; 65(6): 874-82. https://dx.doi.org/10.1016/j.metabol.2016.03.003.
  32. Kyriakakou M., Malamitsi-Puchner A., Militsi H., Boutsikou T., Margeli A., Hassiakos D. et al. Leptin and adiponectin concentrations in intrauterine growth restricted and appropriate for gestational age fetuses, neonates and their mothers. Eur. J. Endocrinol. 2008; 158(3): 343-8. https://dx.doi.org/10.1530/EJE-07–0692.
  33. Сукало А.В., Прилуцкая В.А., Солнцева А.В., Уварова Е.В. Современные представления о роли адипоцитокинов в программировании гормонально-метаболических процессов у маловесных к сроку гестации детей. Педиатрия. Восточная Европа. 2015; 1(9): 130-41. [Sukalo A.V., Prilutskaya V.A., Solntseva A.V., Uvarova E.V. Modern views on the role of adipocytokines in programming hormonal and metabolic processes in small for gestational age children. Pediatrics. Eastern Europe. 2015; 1(09): 130-41.(in Russian)].
  34. Dessì A., Pravettoni C., Cesare Marincola F., Schirru A., Fanos V. The biomarkers of fetal growth in intrauterine growth retardation and large for gestational age cases: from adipocytokines to a metabolomic all-in-one tool. Expert Rev. Proteomics. 2015; 12(3): 309-16. https://dx.doi.org/10.1586/14789450.2015.1034694.
  35. Valsamakis G., Papatheodorou D.C., Naoum A., Margeli A., Papassotiriou I., Kapantais E. et al. Neonatal birth waist is positively predicted by second trimester maternal active ghrelin, a pro-appetite hormone, and negatively associated with third trimester maternal leptin, a pro-satiety hormone. Early Hum. Dev. 2014; 90(9): 487-92. https://dx.doi.org/10.1016/j.earlhumdev.2014.07.001.
  36. Dimas A., Politi A., Papaioannou G., Barber T.M., Weickert M.O., Grammatopoulos D.K. et al. The gestational effects of maternal appetite axis molecules on fetal growth, metabolism and long-term metabolic health: A systematic review. Int. J. Mol. Sci. 2022; 23(2): 695. https://dx.doi.org/10.3390/ijms23020695.
  37. Malamitsi-Puchner A., Briana D.D., Boutsikou M., Kouskouni E., Hassiakos D., Gourgiotis D. Perinatal circulating visfatin levels in intrauterine growth restriction. Pediatrics. 2007; 119(6): e1314-8. https://dx.doi.org/10.1542/peds.2006-2589.
  38. Тыртова Л.В., Паршина Н.В., Скобелева К.В. Генетические и эпигенетические аспекты ожирения и метаболического синдрома, возможности профилактики в детском возрасте. Педиатр. 2013; 4(2): 3-11. [Tyrtova L.V., Parshina N.V., Skobeleva K.V. Genetic and epigenetic aspects of obesity and metabolic syndrome, the possibility of prevention in childhood. Pediatrics. 2013; 2: 3-11 (in Russian)].
  39. Белоусова Т.В., Андрюшина И.В. Задержка внутриутробного развития и ее влияние на состояние здоровья детей в последующие периоды жизни. Возможности нутритивной коррекции. Вопросы современной педиатрии. 2015; 14(1): 23-30. [Belousova T.V., Andryushina I.V. Intrauterine growth retardation and its impact on the health of children in subsequent periods of life. Possibilities of nutritional correction. Issues of modern pediatrics. 2015; 14(1): 23-30. (in Russian)].
  40. Carolan-Olah M., Duarte-Gardea M., Lechuga J. A critical review: early life nutrition and prenatal programming for adult disease. J. Clin. Nurs. 2015; 24(23-24): 3716-29. https://dx.doi.org/10.1111/jocn.12951.
  41. Wen K.C., Sung P.L., Yen M.S., Chuang C.M., Liou W.S., Wang P.H. MicroRNAs regulate several functions of normal tissues and malignancies. Taiwan. J. Obstet. Gynecol. 2013; 52(4): 465-9. https://dx.doi.org/ 10.1016/j.tjog.2013.10.002.
  42. Monk M., Boubelik M., Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987; 99(3): 371-82.https://dx.doi.org/10.1242/dev.99.3.371.

Received 01.04.2022

Accepted 20.07.2022

About the Authors

Ekaterina E. Soldatova, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia, +7(906)110-51-13, katerina.soldatova95@bk.ru, https://orcid.org/0000-0001-6463-3403, 117997, Russia, Moscow, Ac. Oparina str., 4.
Natalia E. Kan, Professor, MD, PhD, Deputy Director for Science, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(926)220-86-55, kan-med@mail.ru, Researcher ID: B-2370-2015, SPIN-код: 5378-8437,
Authors ID: 624900, Scopus Author ID: 57008835600, https://orcid.org/0000-0001-5087-5946, 117997, Russia, Moscow, Ac. Oparina str., 4.
Victor L. Tyutyunnik, Professor, MD, PhD, Leading Researcher of Research and Development Service, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(903)969-50-41, tioutiounnik@mail.ru, Researcher ID: B-2364-2015, SPIN-код: 1963-1359,
Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099, 117997, Russia, Moscow, Ac. Oparina str., 4.
Maria V. Volochaeva, PhD, Senior Researcher, 1st Obstetrics Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russia, +7(919)968-72-98, m_volochaeva@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.

Authors' contributions: Soldatova E.E., Kan N.E., Tyutyunnik V.L., Volochaeva M.V. – the concept and design of the investigation, obtaining data for analysis, collecting publications, processing and analyzing material on the topic, writing the text of the manuscript, editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The investigation has not been sponsored.
For citation: Soldatova E.E., Kan N.E., Tyutyunnik V.L., Volochaeva M.V. Fetal growth retardation in the context of fetal programming.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 8: 5-10 (in Russian)
http://dx.doi.org/10.18565/aig.2022.8.5-10

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.