Relationship between lipid metabolism and insulin resistance in gestational diabetes mellitus

Afonina V.A., Batrak N.V., Malyshkina A.I., Sotnikova N.Yu.

1) V.N. Gorodkov Ivanovo Research Institute of Maternity and Childhood, Ministry of Health of Russia, Ivanovo, Russia; 2) Ivanovo State Medical Academy, Ministry of Health of Russia, Ivanovo, Russia
Gestational diabetes mellitus (GDM) that currently has an increasingly pronounced tendency to increase is an urgent problem in modern health care. GDM is a risk factor for the development of chronic metabolic diseases and cardiovascular pathology in mothers and their offspring, and it is a cause of adverse perinatal outcomes and neonatal mortality. There are more and more data on the molecular mechanisms of GDM in world literature; however, most of them remain unsystematized. In this connection, the investigators analyzed Russian and foreign literature on the problem of lipid metabolism in GDM and studied a number of molecular and cellular determinants of insulin resistance in pregnancy, which are associated with lipid metabolism disorders, as well as the role of free fatty acids in the development of lipid metabolism disorders. This review presents the relationship between the formed insulin resistance in GDM and free fatty acids, as well as regulators of adipogenesis, such as PPARγ, FABP4, FAS, and Pref-1. There was a correlation of changes in the indices among themselves, as well as with pregnancy outcomes in experimental models.
Conclusion: Despite an abundance of information on this topic, the relationship between adipogenesis and insulin resistance has not been fully explored. There is a need for further investigation of PPARγ, FABP4, FAS, and Pref-1 as possible practically applicable molecular and cellular biomarkers for GDM and long-term consequences in the woman and fetus.

Keywords

gestational diabetes mellitus
insulin resistance
free fatty acids

References

  1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017; 390(10113): 2627-42.https://dx.doi.org/10.1016/S0140-6736(17)32129-3.
  2. Lende M., Rijhsinghani A. Gestational diabetes: overview with emphasis on medical management. Int. J. Environ. Res. Public Health. 2020; 17(24): 9573. https://dx.doi.org/10.3390/ijerph17249573.
  3. Mishra S., Rao C.R., Shetty A. Trends in the diagnosis of gestational diabetes mellitus. Scientifica (Cairo). 2016; 2016: 5489015.https://dx.doi.org/10.1155/2016/5489015.
  4. Yadav S.B., Gopalakrishnan V., Kapoor D., Bhatia E., Singh R., Pradeep Y. et al. Evaluation of the prevalence of gestational diabetes mellitus in North Indians using the International Association of Diabetes and Pregnancy Study groups (IADPSG) criteria. J. Postgrad. Med. 2015; 61(3): 155-8.https://dx.doi.org/10.4103/0022-3859.159306.
  5. Абрамова М.Е., Ходжаева З.С., Горина К.А., Муминова К.Т., Горюнов К.В., Рагозин А.К., Силачев Д.Н. Гестационный сахарный диабет: скрининг и диагностические критерии в ранние сроки беременности. Акушерство и гинекология. 2021; 5: 25-32. [Abramova M.E., Khodzhaeva Z.S., Gorina K.A., Muminova K.T., Goryunov K.V., Ragozin A.K., Silachev D.N. Gestational diabetes mellitus: screening and diagnostic criteria in early pregnancy. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2021; 5: 25-32 (in Russian)]. https://dx.doi.org/10.18565/aig.2021.5.25-32.
  6. Малышкина А.И., Батрак Н.В. Особенности гестационного периода и перинатальные исходы у женщин с гестационным сахарным диабетом. Вестник Ивановской медицинской академии. 2014; 19(1): 27-9. [Malyshkina A.I., Batrak N.V. Features of the gestational period and perinatal outcomes in women with gestational diabetes mellitus. Vestnik Ivanovskoj medicinskoj akademii/Bulletin of the Ivanovo Medical Academy. 2014; 19(1): 27-9 (in Russian)].
  7. Ходжаева З.С., Снеткова Н.В., Клименченко Н.И., Абрамова М.Е., Дегтярева Е.И., Донников А.Е. Клинико-молекулярно-генетические детерминанты формирования гестационного сахарного диабета. Акушерство и гинекология. 2019; 4: 18-24. [Khodzhaeva Z.S., Snetkova N.V., Klimenchenko N.I., Abramova M.E., Degtyareva E.I., Donnikov A.E. Clinical, molecular and genetic determinants of the formation of gestational diabetes mellitus. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2019; 4: 18-24 (in Russian)]. https://dx.doi.org/10.18565/aig.2019.4.18-24.
  8. Матейкович Е.А. Неблагоприятные исходы беременности и гестационный сахарный диабет: от исследования HAPO к современным данным. Акушерство и гинекология. 2021; 2: 13-20. [Mateikovich E.A. Adverse pregnancy outcomes and gestational diabetes: from the HAPO study to current data. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2021; 2: 13-20(in Russian)]. https://dx.doi.org/10.18565/aig.2021.2.13-20.
  9. Мирошник Е.В., Рюмина И.И., Зубков В.В. Влияние сахарного диабета матери на здоровье новорожденного. Акушерство и гинекология. 2016; 9: 45-9. https://dx.doi.org/10.18565/aig.2016.9.45-9. [Miroshnik E.V., Ryumina I.I., Zubkov V.V. Impact of maternal diabetes mellitus on neonatal health. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; 9: 45-9 (in Russian)]. https://dx.doi.org/10.18565/aig.2016.9.45-9
  10. Boden G. Obesity, insulin resistance and free fatty acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011; 18(2): 139-43. https://dx.doi.org/10.1097/MED.0b013e3283444b09.
  11. Gastaldelli A., Gaggini M., DeFronzo R.A. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio Metabolism Study. Diabetes. 2017; 66(4): 815-22. https://dx.doi.org/10.2337/db16-1167.
  12. Chueire V.B., Muscelli E. Effect of free fatty acids on insulin secretion, insulin sensitivity and incretin effect – a narrative review. Arch. Endocrinol. Metab. 2021; 65(1): 24-31. https://dx.doi.org/10.20945/2359-3997000000313.
  13. Capurso C., Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul. Pharmacol. 2012; 57(2-4): 91-7.https://dx.doi.org/10.1016/j.vph.2012.05.003.
  14. Soboczak A.I.S., Blindauer C.A., Stewart A.J. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients. 2019; 11(9): 2022.https://dx.doi.org/10.3390/nu11092022.
  15. Abaraviciene S.M., Muhammed S.J., Amisten S., Lundquist I., Salehi A. GPR40 protein levels are crucial to the regulation of stimulated hormone secretion in pancreatic islets. Lessons from spontaneous obesity-prone and non-obese type 2 diabetes in rats. Mol. Cell. Endocrinol. 2013; 381(1-2): 150-9.https://dx.doi.org/10.1016/j.mce.2013.07.025.
  16. Xiao C., Dash S., Morgantini C., Lewis G.F. New and emerging regulators of intestinal lipoprotein secretion. Atherosclerosis. 2014; 233(2): 608-15.https://dx.doi.org/10.1016/j.atherosclerosis.2013.12.047.
  17. Villafan-Bernal J.R., Acevedo-Alba M., Reyes-Pavon R., Diaz-Parra G.A., Lip-Sosa D.L., Vazquez-Delfin H.I. et al. Plasma levels of free fatty acids in women with gestational diabetes and its intrinsic and extrinsic determinants: systematic review and meta-analysis. J. Diabetes Res. 2019; 2019: 7098470. https://dx.doi.org/10.1155/2019/7098470.
  18. Han L., Shen W.J., Bittner S., Kraemer F.B., Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 2017; 13(3): 279-96. https://dx.doi.org/10.2217/fca-2017-0019.
  19. Zhang K., Yuan Q., Xie J., Yuan L., Wang Y. PPAR-γ activation increases insulin secretion independent of CASK in INS-1 cells. Acta Biochim. Biophys. Sin. (Shanghai). 2019; 51(7): 715-22. https://dx.doi.org/10.1093/abbs/gmz052.
  20. Shao X., Wang M., Wei X., Deng S., Fu N., Peng Q. et al. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr. Stem Cell Res. Ther. 2016; 11(3): 282-9. https://dx.doi.org/10.2174/1574888x10666150528144905.
  21. Fantacuzzi M., De Filippis B., Amoroso R., Giampietro L. PPAR ligands containing stilbene scaffold. Mini Rev. Med. Chem. 2019; 19(19): 1599-610.https://dx.doi.org/10.2174/1389557519666190603085026.
  22. Ahmadian М., Jae Suh М., Hah N., Liddle C., Atkins A.R., Downes M., Evans R.M. PPAR-γ signaling and metabolism: the good, the bad and the future. Nat. Med. 2013; 19(5): 557-66. https://dx.doi.org/10.1038/nm.3159.
  23. Usuda D., Kanda T. Peroxisome proliferator-activated receptors for hypertension. World J. Cardiol. 2014; 6(8): 744-54. https://dx.doi.org/10.4330/wjc.v6.i8.744.
  24. Lefterova M.I., Haakonsson A.K., Lazar M.A., Mandrup S. PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 2014; 25(6): 293-302. https://dx.doi.org/10.1016/j.tem.2014.04.001.
  25. Li Y., Jin D., Xie W., Wen L., Chen W., Xu J. et al. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr. Stem Cell Res. Ther. 2018; 13(3): 185-92. https://dx.doi.org/10.2174/1574888X12666171012141908.
  26. Janani C., Ranjitha Kumari B.D. PPAR gamma gene – a review. Diabetes Metab. Syndr. 2015; 9(1): 46-50. https://dx.doi.org/10.1016/j.dsx.2014.09.015.
  27. Kadam L., Kohan-Ghadr H.R., Drewlo S. The balancing act – PPAR-γ's roles at the maternal-fetal interface. Syst. Biol. Reprod. Med. 2015; 61(2): 65-71. https://dx.doi.org/10.3109/19396368.2014.991881.
  28. Furuhashi M., Saitoh S., Shimamoto K., Miura T. Fatty Acid-Binding Protein 4 (FABP4): pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2015; 8(Suppl. 3): 23-33. https://dx.doi.org/10.4137/CMC.S17067.
  29. Trojnar M., Patro-Małysza J., Kimber-Trojnar Ż., Leszczyńska-Gorzelak B., Mosiewicz J. Associations between Fatty Acid-Binding Protein 4 – a proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells. 2019; 8(3): 227. https://dx.doi.org/10.3390/cells8030227.
  30. Cabia B., Andrade S., Carreira M.C., Casanueva F.F., Crujeiras A.B. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 2016; 17(4): 361-76. https://dx.doi.org/10.1111/obr.12377.
  31. Garin-Shkolnik T., Rudich A., Hotamisligil G.S., Rubinstein M. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes. 2014; 63(3): 900-11. https://dx.doi.org/10.2337/db13-0436.
  32. Fasshauer M., Blüher M., Stumvoll M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol. 2014; 2: 488-99. https://dx.doi.org/10.1016/S2213-8587(13)70176-1.
  33. Zhang Y., Zhang H.H., Lu J.H., Zheng S.Y., Long T., Li Y.T. et al. Changes in serum adipocyte fatty acid-binding protein in women with gestational diabetes mellitus and normal pregnant women during mid- and late pregnancy. J. Diabetes Investig. 2016; 7(5): 797-804. https://dx.doi.org/10.1111/jdi.12484.
  34. Ortega-Senovilla H., Schaefer-Graf U., Meitzner K., Abou-Dakn M., Graf K., Kintscher U., Herrera E. Gestational diabetes mellitus causes changes in the concentrations of adipocyte fatty acid-binding protein and other adipocytokines in cord blood. Diabetes Care. 2011; 34(9): 2061-6. https://dx.doi.org/10.2337/dc11-0715.
  35. Li L., Lee S.J., Kook S.Y., Ahn T.G., Lee J.Y., Hwang J.Y. Serum from pregnant women with gestational diabetes mellitus increases the expression of FABP4 mRNA in primary subcutaneous human pre-adipocytes. Obstet. Gynecol. Sci. 2017; 60(3): 274-82. https://dx.doi.org/10.5468/ogs.2017.60.3.274.
  36. Ning H., Tao H., Weng Z., Zhao X. Plasma fatty acid-binding protein 4 (FABP4) as a novel biomarker to predict gestational diabetes mellitus. Acta Diabetol. 2016; 53(6): 891-8. https:/dx./doi.org/10.1007/s00592-016-0867-8.
  37. Kimber-Trojnar Ż., Patro-Małysza J., Trojnar M., Skórzyńska-Dziduszko K.E., Bartosiewicz J., Oleszczuk J., Leszczyńska-Gorzelak B. Fatty Acid-Binding Protein 4-An "Inauspicious" adipokine-in serum and urine of post-partum women with excessive gestational weight gain and gestational diabetes mellitus. J. Clin. Med. 2018; 7(12): 505. https://dx.doi.org/10.3390/jcm7120505.
  38. Svensson H., Wetterling L., Andersson-Hall U., Jennische E., Edén S., Holmäng A., Lönn M. Adipose tissue and body composition in women six years after gestational diabetes: factors associated with development of type 2 diabetes. Adipocyte. 2018; 7(4): 229-37.https://dx.doi.org/10.1080/21623945.2018.1521230.
  39. De Silva G.S., Desai K., Darwech M., Naim U., Jin X., Adak S. et al. Circulating serum fatty acid synthase is elevated in patients with diabetes and carotid artery stenosis and is LDL-associated. Atherosclerosis. 2019; 287: 38-45.https://dx.doi.org/10.1016/j.atherosclerosis.2019.05.016.
  40. Carroll R.G., Zasłona Z., Galván-Peña S., Koppe E.L., Sévin D.C., Angiari S. et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J. Biol. Chem. 2018; 293(15): 5509-21. https://dx.doi.org/10.1074/jbc.RA118.001921.
  41. Wei X., Song H., Yin L., Rizzo M.G., Sidhu R., Covey D.F. et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature. 2016; 539(7628): 294-8. https://dx.doi.org/10.1038/nature20117.
  42. Balachandiran M., Bobby Z., Dorairajan G., Jacob S.E., Gladwin V., Vinayagam V., Packirisamy R.M. Placental accumulation of triacylglycerols in gestational diabetes mellitus and its association with altered fetal growth are related to the differential expressions of proteins of lipid metabolism. Exp. Clin. Endocrinol. Diabetes. 2021; 129(11): 803-12. https://dx.doi.org/10.1055/a-1017-3182.
  43. Nicholson T., Church C., Baker D.J., Jones S.W. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. J. Inflamm. (London). 2018; 15: 9. https://dx.doi.org/10.1186/s12950-018-0185-8.
  44. Vanella L., Sodhi K., Kim D.H., Puri N., Maheshwari M., Hinds T.D. et al. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res. Ther. 2013; 4(2): 28. https://dx.doi.org/10.1186/scrt176.
  45. Hudak C.S., Gulyaeva O., Wang Y., Park S.M., Lee L., Kang C., Sul H.S. Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 2014; 8(3): 678-87. https://dx.doi.org/10.1016/j.celrep.2014.06.060.
  46. Hudak C.S., Sul H.S. Pref-1, a gatekeeper of adipogenesis. Front. Endocrinol. (Lausanne). 2013; 4: 79. https://dx.doi.org/10.3389/fendo.2013.00079.
  47. Wang Y.T., Chiang H.H., Huang Y.S., Hsu C.L., Yang P.J., Juan H.F., Yang W.S. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016; 7(11): e2458. https://dx.doi.org/10.1038/cddis.2016.323.
  48. Wurst U., Ebert T., Kralisch S., Stumvoll M., Fasshauer M. Serum levels of the adipokine Pref-1 in gestational diabetes mellitus. Cytokine. 2015; 71(2): 161-4. https://dx.doi.org/10.1016/j.cyto.2014.10.015.
  49. 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016; 7(11): e2458. https://doi:10.1038/cddis.2016.323
  50. Wurst U., Ebert T., Kralisch S., Stumvoll M., Fasshauer M. Serum levels of the adipokine Pref-1 in gestational diabetes mellitus. Cytokine. 2015; 71(2): 161-4. https://doi:10.1016/j.cyto.2014.10.015

Received 30.03.2022

Accepted 08.07.2022

About the Authors

Victoria A. Afonina, Postgraduate Student at the Department of Obstetrics and Gynecology, Neonatology, Anesthesiology and Resuscitation, V.N. Gorodkov Ivanovo Research Institute of Motherhood and Childhood, Ministry of Health of the Russian Federation, +7(963)151-59-58, ezhevika23023@yandex.ru, https://orcid.org/0000-0002-3145-5679, 153045, Russia, Ivanovo, Pobedy str., 20.
Natalia V. Batrak, PhD, Associate Professor at the Department of Obstetrics and Gynecology, Medical Genetics, Ivanovo State Medical Academy, Ministry of Health
of the Russian Federation, +7(962)160-01-33, batrakn@inbox.ru, https://orcid.org/0000-0002-5230-9961, 153012, Russia, Ivanovo, Sheremetyevsky Ave., 8.
Anna I. Malyshkina, Dr. Med. Sci., Professor, Director, V.N. Gorodkov Ivanovo Research Institute of Motherhood and Childhood of the Ministry of Health of the Russian Federation, 153045, Russia, Ivanovo, Pobedy str., 20; Head of the Department of Obstetrics and Gynecology, Medical Genetics, Ivanovo State Medical Academy,
Ministry of Health of the Russian Federation, 153012, Russia, Ivanovo, Sheremetyevsky Ave., 8, ivniimid@inbox.ru, https://orcid.org/0000-0002-1145-0563
Natalia Yu. Sotnikova, Dr. Med. Sci., Professor, Honored Doctor of the Russian Federation, Head of the Laboratory of Clinical Immunology, V.N. Gorodkov Ivanovo Research Institute of Motherhood and Childhood, Ministry of Health of the Russian Federation, 153045, Russia, Ivanovo, Pobedy str., 20; Professor at the Department of Pathophysiology and Immunology, Ivanovo State Medical Academy, Ministry of Health of the Russian Federation, 153012, Russia, Ivanovo, Sheremetyevsky Ave., 8,
ivniimid@inbox.ru, https://orcid.org/0000-0002-0608-0692

Authors' contributions: Afonina V.A., Batrak N.V., Malyshkina A.I., Sotnikova N.Yu. – review of publications on the topic of the article, analysis of the findings, writing the text of the manuscript.
Conflicts of interest: The authors declare that there are no possible conflicts of interest.
Funding: The investigation has not been sponsored.
For citation: Afonina V.A., Batrak N.V., Malyshkina A.I., Sotnikova N.Yu. Relationship between lipid metabolism and insulin resistance in gestational diabetes mellitus.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 7: 13-20 (in Russian)
https://dx.doi.org/10.18565/aig.2022.7.13-20

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.