Congenital malformations of infectious origin
Shipitsyna E.V., Bespalova O.N., Talantova O.E., Kogan I.Yu.
Infection of the fetus during organogenesis can induce teratogenesis and lead to pregnancy loss, the development of congenital anomalies or neonatal death. Although the impact of infectious factors on the incidence of congenital malformations is relatively low, infections that have teratogenic effects are a significant cause of perinatal morbidity and mortality on a global scale. The causative agents of the most common intrauterine infections with proven teratogenic effects are pathogens of the TORCH group (Toxoplasma, Others (Syphilis, Varicella-Zoster, Parvovirus B19), Rubella, Cytomegalovirus, Herpes). In most cases, TORCH group infections are not dangerous to the mother, but can lead to very serious consequences for the fetus. Therefore, timely detection of infection in the mother and monitoring of the fetus are extremely important for competent counseling of women about possible adverse outcomes and measures to prevent them. The review presents the data from recent studies on the epidemiology of congenital malformations of infectious origin, mechanisms of infectious teratogenesis, principles of prevention and treatment of infections with teratogenic effects, and methods of prenatal prognosis.
Conclusion: The development of effective strategies for predicting, preventing, and treating congenital infections requires research at all levels, namely, basic, translational, clinical, and population-based ones. Further investments in global epidemiological surveillance are necessary to promptly identify new infectious teratogens.
Authors’ contributions: Shipitsyna E.V. – developing the concept and design of the study, literature search and analysis, writing the text, approval of the final version of the article; Bespalova O.N., Talantova O.E., Kogan I.Yu. – developing the concept and design of the study, literature search and analysis, editing the text, approval of the final version of the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The work is based on the research project “Biomedical matrices of healthy motherhood and antenatal programming of the fetus” with the registration number 1024032800227-5-3.2.2.
For citation: Shipitsyna E.V., Bespalova O.N., Talantova O.E., Kogan I.Yu.
Congenital malformations of infectious origin.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (9): 16-29 (in Russian)
https://dx.doi.org/10.18565/aig.2025.122
Keywords
References
- World Health Organization. Congenital disorders. Available at: https://www.who.int/health-topics/congenital-anomalies#tab=tab_1=tab_1
- Boyle B., Addor M., Arriola L., Barisic I., Csáky-szunyogh M., Bianchi F. et al. Estimating global burden of disease due to congenital anomaly : an analysis of european data. Arch. Dis. Child. Fetal Neonatal Ed. 2018; 103(1): F22-8. https://dx.doi.org/10.1136/archdischild-2016-311845
- Feldkamp M.L., Carey J.C., Byrne J.L.B., Krikov S., Botto L.D. Etiology and clinical presentation of birth defects: population based study. BMJ. 2017; 357: j2249. https://dx.doi.org/10.1136/BMJ.J2249
- Adams Waldorf K.M., McAdams R.M. Influence of infection during pregnancy on fetal development. Reproduction. 2013; 146(5): R151-62. https://dx.doi.org/10.1530/REP-13-0232
- Coyne C.B., Lazear H.M. Zika virus – reigniting the TORCH. Nat. Rev. Microbiol. 2016; 14(11): 707-15. https://dx.doi.org/10.1038/nrmicro.2016.125
- Colonna A., Buonsenso D., Pata D., Salerno G., Chieffo D.P.R., Romeo D.M. et al. Long-term clinical, audiological, visual, neurocognitive and behavioral outcome in children with symptomatic and asymptomatic congenital cytomegalovirus infection treated with valganciclovir. Front. Med. (Lausanne). 2020; 7: 268. https://dx.doi.org/10.3389/fmed.2020.00268
- Perera C.A. Congenital cataract following German measles in pregnancy. Sight Sav. Rev. 1946; 16(3): 135-7.
- Cauchemez S., Besnard M., Bompard P., Dub T., Guillemette-Artur P., Eyrolle-Guignot D. et al. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet. 2016; 387(10033): 2125-32. https://dx.doi.org/10.1016/S0140-6736(16)00651-6
- Adams Waldorf K.M., Nelson B.R., Stencel-Baerenwald J.E., Studholme C., Kapur R.P., Armistead B. et al. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat. Med. 2018; 24(3): 368-74. https://dx.doi.org/10.1038/NM.4485
- Stegmann B.J., Carey J.C. TORCH Infections. Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), Rubella, Cytomegalovirus (CMV), and Herpes infections. Curr. Womens Health Rep. 2002; 2(4): 253-8.
- European Commission. Prevalence charts and tables. Available at: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en
- Morris J.K., Springett A.L., Greenlees R., Loane M., Addor C., Arriola L. et al. Trends in congenital anomalies in Europe from 1980 to 2012. PLOS One. 2018; 13(4): e0194986. https://dx.doi.org/10.1371/journal.pone.0194986
- Wang Y., Li S., Ma N., Zhang Q., Wang H., Cui J. et al. The association of ToRCH infection and congenital malformations: a prospective study in China. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 240: 336-40. https://dx.doi.org/10.1016/j.ejogrb.2019.04.042
- Voordouw B., Rockx B., Jaenisch T., Fraaij P., Mayaud P., Vossen A. et al. Performance of Zika assays in the context of Toxoplasma gondii, Parvovirus B19, Rubella Virus, and Cytomegalovirus (TORCH) diagnostic assays. Clin. Microbiol. Rev. 2019; 33(1): e00130-18. https://dx.doi.org/10.1128/CMR.00130-18
- Leruez-Ville M., Magny J.F., Couderc S., Pichon C., Parodi M., Bussières L. et al. Risk factors for congenital cytomegalovirus infection following primary and nonprimary maternal infection: a prospective neonatal screening study using polymerase chain reaction in saliva. Clin. Infect. Dis. 2017; 65(3): 398-404. https://dx.doi.org/10.1093/cid/cix337
- Рогозина Н.В., Васильев В.В., Иванова Р.А., Ушакова Г.М., Безверхая Н.С. Поражения органов и систем у детей, родившихся от матерей с острой цитомегаловирусной инфекцией. Инфекционные болезни: новости, мнения, обучение. 2023; 12(2): 57-64. [Rogozina N.V., Vasil’ev V.V., Ivanova R.A., Ushakova G.M., Bezverkhaya N.S. Lesions of organs and systems in children born from mothers with acute cytomegalovirus infection. Infectious Diseases: News, Opinions, Training. 2023; 12(2): 57-64 (in Russian)]. https://dx.doi.org/10.33 029/2305-3496-2023-12-2-57-64
- Ssentongo P., Hehnly C., Birungi P., Roach M.A., Spady J., Fronterre C. et al. Congenital cytomegalovirus infection burden and epidemiologic risk factors in countries with universal screening: a systematic review and meta-analysis. JAMA Netw. Open. 2021; 4(8): e2120736. https://dx.doi.org/10.1001/jamanetworkopen.2021.20736
- Vande Walle C., Keymeulen A., Schiettecatte E., Acke F., Dhooge I., Smets K. et al. Brain MRI findings in newborns with congenital cytomegalovirus infection: results from a large cohort study. Eur. Radiol. 2021; 31(10): 8001-10. https://dx.doi.org/10.1007/S00330-021-07776-2
- Diogo M.C., Glatter S., Binder J., Kiss H., Prayer D. The MRI spectrum of congenital cytomegalovirus infection. Prenat. Diagn. 2020; 40(1): 110-24. https://dx.doi.org/10.1002/pd.5591
- Lucignani G., Guarnera A., Rossi-Espagnet M.C., Moltoni G., Antonelli A., Figà Talamanca L. et al. From fetal to neonatal neuroimaging in TORCH infections: A pictorial review. Children (Basel). 2022; 9(8): 1210. https://dx.doi.org/10.3390/children9081210
- Khalil A., Sotiriadis A., Chaoui R., da Silva Costa F., D’Antonio F., Heath P.T. et al. ISUOG practice guidelines: role of ultrasound in congenital infection. Ultrasound Obstet. Gynecol. 2020; 56(1): 128-51. https://dx.doi.org/10.1002/uog.21991
- Buca D., Di Mascio D., Rizzo G., Giancotti A., D’Amico A., Leombroni M. et al. Outcome of fetuses with congenital cytomegalovirus infection and normal ultrasound at diagnosis: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2021; 57(4): 551-9. https://dx.doi.org/10.1002/uog.23143
- Mappa I., De Vito M., Flacco M.E., Di Mascio D., Antonio F., Rizzo G. Prenatal predictors of adverse perinatal outcome in congenital cytomegalovirus infection: a retrospective multicenter study. J. Perinat. Med. 2022; 51(1): 102-10. https://dx.doi.org/10.1515/jpm-2022-0286
- Shahar-Nissan K., Pardo J., Peled O., Krause I., Bilavsky E., Wiznitzer A. et al. Valaciclovir to prevent vertical transmission of cytomegalovirus after maternal primary infection during pregnancy: a randomised, double-blind, placebo-controlled trial. Lancet. 2020; 396(10253): 779-85. https://dx.doi.org/10.1016/S0140-6736(20)31868-7
- Chatzakis C., Shahar-Nissan K., Faure-Bardon V., Picone O., Hadar E., Amir J. et al. The effect of valacyclovir on secondary prevention of congenital cytomegalovirus infection, following primary maternal infection acquired periconceptionally or in the first trimester of pregnancy. An individual patient data meta-analysis. Am. J. Obstet. Gynecol. 2024; 230(2): 109-17.e2. https://dx.doi.org/10.1016/j.ajog.2023.07.022
- Dzubay S.K., Gagliuso A.H., Arora M., Doshi U., Caughey A.B. Universal screening and valacyclovir for first trimester primary cytomegalovirus: a cost-effectiveness analysis. Am. J. Obstet. Gynecol. 2025; 233(3): 191.e1-9. https://dx.doi.org/10.1016/J.AJOG.2025.02.009
- Xiang J., Zhang H., Sun X., Zhang J., Xu Z., Sun J. et al. Utility of whole genome sequencing for population screening of deafness-related genetic variants and cytomegalovirus infection in newborns. Front. Genet. 2022; 13: 883617. https://dx.doi.org/10.3389/fgene.2022.883617
- Yang Y., Liu L., Yang Z., Wei X., Wei X., Chen Y. et al. Whole genome sequencing incidentally identified intrauterine cytomegalovirus infection in a fetus with fetal growth restriction: a case study. Ann. Clin. Case Rep. 2023; 8: 2384.
- Hu X., Wang H.Y., Otero C.E., Jenks J.A., Permar S.R. Lessons from acquired natural immunity and clinical trials to inform next-generation human cytomegalovirus vaccine development. Annu. Rev. Virol. 2022; 9(1): 491-520. https://dx.doi.org/10.1146/annurev-virology-100220-010653
- Hughes B., Clifton R., Rouse D., Saade G.R., Dinsmoor M.J., Reddy U.M. et al. Randomized trial of hyperimmune globulin for congenital CMV infection-2-year outcomes. N. Engl. J. Med. 2023; 389(19): 1822-4. https://dx.doi.org/10.1056/NEJMc2308286
- Chiopris G., Veronese P., Cusenza F., Procaccianti M., Perrone S., Daccò V. et al. Congenital cytomegalovirus infection: update on diagnosis and treatment. Microorganisms. 2020; 8(10): 1516. https://dx.doi.org/10.3390/microorganisms8101516
- Maldonado Y.A., Read J.S. Diagnosis, treatment, and prevention of congenital toxoplasmosis in the United States. Pediatrics. 2017; 139(2): e20163860. https://dx.doi.org/10.1542/peds.2016-3860
- Thiébaut R., Leproust S., Chêne G., Gilbert R. Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet. 2007; 369(9556): 115-22. https://dx.doi.org/10.1016/S0140-6736(07)60072-5
- Peyron F., L’ollivier C., Mandelbrot L., Wallon M., Piarroux R., Kieffer F. et al. Maternal and congenital Toxoplasmosis: diagnosis and treatment recommendations of a French multidisciplinary working group. Pathogens (Basel). 2019; 8(1): 24. https://dx.doi.org/10.3390/pathogens8010024
- Васильев В.В., Рогозина Н.В., Иванова Р.А. Проблема токсоплазмоза в амбулаторной практике. Часть III. Токсоплазмоз у беременных и врожденный токсоплазмоз. Российский семейный врач. 2023;27(3): 5-11. [Vasiliev V.V., Rogosina N.V., Ivanova R.A. The problem of toxoplasmosis in outpatient practice. Part III. Toxoplasmosis in pregnants and congenital toxoplasmosis. Russian Family Doctor. 2023; 27(3): 5-11 (in Russian)]. https://dx.doi.org/10.17816/RFD568292
- Deganich M., Boudreaux C., Benmerzouga I. Toxoplasmosis infection during pregnancy. Trop. Med. Infect. Dis. 2022; 8(1): 3. https://dx.doi.org/10.3390/tropicalmed8010003
- Montoya J.G., Remington J.S. Management of Toxoplasma gondii infection during pregnancy. Clin. Infect. Dis. 2008; 47(4): 554-66. https://dx.doi.org/10.1086/590149
- Reef S.E., Strebel P., Dabbagh A., Gacic-Dobo M., Cochi S. Progress toward control of rubella and prevention of congenital rubella syndrome--worldwide, 2009. J. Infect. Dis. 2011; 204 Suppl. 1: S24-7. https://dx.doi.org/10.1093/infdis/jir155
- Баркинхоева Л.А., Тураева Н.В., Цвиркун О.В., Герасимова А.Г. Состояние иммунитета населения Российской Федерации к краснухе в период элиминации инфекции. Эпидемиология и вакцинопрофилактика. 2024; 23(3): 38-46. [Barkinkhoeva L.A., Turaeva N.V., Tsvirkun O.V., Gerasimova A.G. The state of immunity of the population of the Russian Federation to Rubella during the elimination of infection. Epidemiology and Vaccinal Prevention. 2024; 23(3): 38-46 (in Russian)]. https://dx.doi.org/10.31631/2073-3046-2024-23-3-38-46
- Samies N.L., James S.H. Prevention and treatment of neonatal herpes simplex virus infection. Antiviral. Res. 2020; 176: 104721. https://dx.doi.org/10.1016/j.antiviral.2020.104721
- De Rose D.U., Bompard S., Maddaloni C., Bersani I., Martini L., Santisi A. et al. Neonatal herpes simplex virus infection: From the maternal infection to the child outcome. J. Med. Virol. 2023; 95(8): e29024. https://dx.doi.org/10.1002/JMV.29024
- Fa F., Laup L., Mandelbrot L., Sibiude J., Picone O. Fetal and neonatal abnormalities due to congenital herpes simplex virus infection: a literature review. Prenat. Diagn. 2020; 40(4): 408-14. https://dx.doi.org/10.1002/pd.5587
- Bollaerts K., Riera-Montes M., Heininger U., Hens N., Souverain A., Verstraeten T. et al. A systematic review of varicella seroprevalence in European countries before universal childhood immunization: deriving incidence from seroprevalence data. Epidemiol. Infect. 2017; 145(13): 2666-77. https://dx.doi.org/10.1017/S0950268817001546
- Ahn K.H., Park Y.J., Hong S.C., Lee E.H., Lee J.S., Oh M.J. et al. Congenital varicella syndrome: a systematic review. J. Obstet. Gynaecol. 2016; 36(5): 563-6. https://dx.doi.org/10.3109/01443615.2015.1127905
- Bhavsar S.M., Mangat C. Congenital Varicella syndrome. 2023 Mar 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–.
- Ion A., Orzan O.A., Bălăceanu-Gurău B. Varicella zoster virus infection and pregnancy: an optimal management approach. Pathogens. 2025; 14(2): 151. https://dx.doi.org/10.3390/pathogens14020151
- Nanthakumar M.P., Sood A., Ahmed M., Gupta J. Varicella zoster in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021; 258: 283-7. https://dx.doi.org/10.1016/j.ejogrb.2021.01.009
- World Health Organization. Mother-to-child transmission of syphilis. 2022. Available at: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/stis/prevention/mother-to-child-transmission-of-syphilis
- Рахматулина М.Р., Мелехина Л.Е., Новоселова Е.Ю. Ретроспективный анализ заболеваемости сифилисом в Российской Федерации в 2009–2023 гг. и тенденции динамического развития эпидемиологического процесса. Вестник дерматологии и венерологии. 2025; 101(1): 7-27. [Rakhmatulina M.R., Melekhina L.E., Novoselova E.Yu. Retrospective analysis of syphilis incidence in the Russian Federation in 2009–2023 and trends in the dynamic development of the epidemiological process. Bulletin of Dermatology and Venereology 2025; 101(1): 7-27 (in Russian)]. https://dx.doi.org/10.25208/vdv16851
- David M., Hcini N., Mandelbrot L., Sibiude J., Picone O. Fetal and neonatal abnormalities due to congenital syphilis: a literature review. Prenat. Diagn. 2022; 42(5): 643-55. https://dx.doi.org/10.1002/PD.6135
- Кокорева С.П., Котлова В.Б., Ромашова В.В. Врожденный сифилис на современном этапе. Научный электронный журнал Академическая публицистика. 2021; 4: 633-9. [Kokoreva S.P., Kotlova V.B., Romashova V.V. Congenital Syphilis at the present stage. Scientific electronic Journal Akademicheskaya Publitsistika. 2021; 4: 633-9 (in Russian)].
- Rac M.W.F., Bryant S.N., McIntire D.D., Cantey J.B., Twickler D.M., Wendel G.D. et al. Progression of ultrasound findings of fetal syphilis after maternal treatment. Am. J. Obstet. Gynecol. 2014; 211(4): 426.e1-6. https://dx.doi.org/10.1016/j.ajog.2014.05.049
- Kagan K.O., Hoopmann M., Geipel A., Sonek J., Enders M. Prenatal parvovirus B19 infection. Arch. Gynecol. Obstet. 2024; 310(5): 2363-71. https://dx.doi.org/10.1007/S00404-024-07644-6
- Ornoy A., Ergaz Z. Parvovirus B19 infection during pregnancy and risks to the fetus. Birth Defects Res. 2017; 109(5): 311-23. https://dx.doi.org/10.1002/bdra.23588
- Tolfvenstam T., Broliden K. Parvovirus B19 infection. Semin. Fetal Neonatal Med. 2009; 14(4): 218-21. https://dx.doi.org/10.1016/j.siny.2009.01.007
- dos Santos A.L.S., Rosolen B.B., Ferreira F.C., Chiancone I.S., Pereira S.S., Pontes K.F.M. et al. Intrauterine Zika virus infection: an overview of the current findings. J. Pers. Med. 2025; 15(3): 98. https://dx.doi.org/10.3390/JPM15030098
- Martins M.M., da Cunha A.J.L.A., Robaina J.R., Raymundo C.E., Barbosa A.P., de Andrade Medronho R. Fetal, neonatal, and infant outcomes associated with maternal Zika virus infection during pregnancy: a systematic review and meta-analysis. PLoS One. 2021; 16(2): e0246643. https://dx.doi.org/10.1371/journal.pone.0246643
- Gilbert R.K., Petersen L.R., Honein M.A., Moore C.A., Rasmussen S.A. Zika virus as a cause of birth defects: Were the teratogenic effects of Zika virus missed for decades? Birth defects Res. 2023; 115(3): 265-74. https://dx.doi.org/10.1002/bdr2.2134
- Parums D.V. A review of emerging viral pathogens and current concerns for vertical transmission of infection. Med. Sci. Monit. 2024; 30: e947335. https://dx.doi.org/10.12659/MSM.947335
Received 07.05.2025
Accepted 03.09.2025
About the Authors
Elena V. Shipitsyna, Dr. Bio. Sci., Leading Researcher at the Department of Medical Mirobiology, D.O. Ott Reasearch Institute of Obstetrics, Gynecology and Reproductology, 199034, Russia, St. Petersburg, Mendeleyevskaya Line, 3, shipitsyna@inbox.ru, https://orcid.org/0000-0002-2309-3604Olesya N. Bespalova, Dr. Med. Sci., Deputy Director, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, Russia, St. Petersburg, Mendeleyevskaya Line, 3, shiggerra@mail.ru, https://orcid.org/0000-0002-6542-5953
Olga E. Talantova, PhD, Senior Researcher at the Laboratory of Cytogenetics and Cytogenomics of Reproduction, Obstetrician-Gynecologist of the Medical Genetic Center, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, Russia, St. Petersburg, Mendeleyevskaya Line, 3, olga_talantova@mail.ru,
https://orcid.org/0000-0003-3520-599X
Igor Yu. Kogan, Corresponding Member of RAS, Dr. Med. Sci., Professor, Director, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
199034, Russia, St. Petersburg, Mendeleyevskaya Line, 3, ikogan@mail.ru, https://orcid.org/0000-0002-7351-6900
Corresponding author: Elena V. Shipitsyna, shipitsyna@inbox.ru