The effect of vaccines on the reproductive system

Zaitsevskaya S.A., Dolgushina N.V., Sukhikh G.T.

1) M.V. Lomonosov Moscow State University, Moscow, Russia; 2) Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
The authors carried out a systematic analysis of the data available in the modern literature on the effect of different types of vaccines on the male and female reproductive system. The review includes data from publications presented in the PubMed database ( on this topic. It gives information on the types of vaccines. The paper describes possible adverse events (AEs) due to vaccine administration, as well as the development of autoimmune diseases and AEs associated with the effect of antibody-dependent enhancement. Particular attention is paid to the analysis of the available data on the effect of different types of vaccines, including coronavirus vaccines, on the reproductive system of mammals, including humans, and the genesis of their occurrence, in particular the autoimmune-mediated mechanism of damage to the reproductive organs.
Conclusion. Taking into account that the literature does not describe a single prospective study that would investigate the effect of vaccines on human reproductive function, or data on the possible negative effect of vaccines are conjectural or based on the follow-up findings in patients without prior examination of their reproductive status, it is necessary to conduct further investigations of the effect of different types of vaccines on reproductive function.


autoimmune diseases
antibody-dependent enhancement
reproductive system


  1. Loomis R.J., Johnson P.R. Emerging vaccine technologies. Vaccines. 2015; 3(2): 429-47. https://dx.
  2. Plotkin S.A. Vaccines, vaccination, and vaccinology. J. Infect. Dis. 2003; 187(9): 1349-59. https://dx.
  3. Guimarães L.E., Baker B., Perricone C., Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol. Res. 2015; 100: 190-209. https://dx.
  4. Lee J., Arun Kumar S., Jhan Y.Y., Bishop C.J. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018; 80: 31-47. https://dx.
  5. Горяев А.А., Савкина М.В., Обухов Ю.И., Меркулов В.А., Олефир Ю.В. ДНК- и РНК-вакцины: современное состояние, требования к качеству и особенности проведения доклинических исследований. БИОпрепараты. Профилактика, диагностика, лечение. 2019; 19(2): 72-80. [Goryaev A.A., Savkina M.V., Obukhov Y.I., Merkulov V.A., Olefir Y.V. DNA and RNA vaccines: Current status, quality requirements and specific aspects of preclinical studies. BIOpreparations. Prevention, Diagnosis, Treatment. 2019; 19(2): 72-80. (in Russian)]. https://dx.
  6. Fiuza J.A., Dey R., Davenport D., Abdeladhim M., Meneses C., Oliveira F. et al. Intradermal immunization of leishmania donovani centrin knock-out parasites in combination with salivary protein LJM19 from sand fly vector induces a durable protective immune response in hamsters. PLoS Negl. Trop. Dis. 2016; 10(1): 1-17.
  7. Sánchez-Valdéz F.J., Pérez Brandán C., Ferreira A., Basombrío M.Á. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease. Expert Rev. Vaccines. 2015; 14(5): 681-97. https://dx.
  8. World Health Organization. Module 2: types of vaccine and adverse reactions. WHO Vaccine Safety Basics. 2013: 38-60.
  9. Roth J.A. Mechanistic bases for adverse vaccine reactions and vaccine failures. Adv. Vet. Med. 1999; 41: 681-700.
  10. Stratton K., Ford A., Rusch E., Clayton E.W. Adverse effects of vaccines: Evidence and causality. Washington, D.C.: National Academies Press; 2012. Available at:
  11. McNeil M.M., DeStefano F. Vaccine-associated hypersensitivity. J. Allergy Clin. Immunol. 2018; 141(2): 463-72. 10.1016/j.jaci.2017.12.971.
  12. Jaume M., Yip M.S., Kam Y.W., Cheung C.Y., Kien F., Roberts A. et al. SARS-CoV subunit vaccine: Antibodymediated neutralisation and enhancement. Hong Kong Med. J. 2012; 18(Suppl 2): 31-6. Available at:
  13. Shoenfeld Y., Agmon-Levin N. “ASIA” – autoimmune/inflammatory syndrome induced by adjuvants. J. Autoimmun. 2011; 36(1): 4-8. 10.1016/j.jaut.2010.07.003.
  14. Carvalho J.F., Barros S.M., Branco J.C., Fonseca J.E. Asia or Shoenfeld’s syndrome: highlighting different perspectives for diffuse chronic pain. Acta Reumatol. Port. 2011; 36(1): 10-2. Available at:
  15. Meroni P.L. Autoimmune or auto-inflammatory syndrome induced by adjuvants (ASIA): old truths and a new syndrome? J. Autoimmun. 2011; 36(1): 1-3.
  16. Perricone C., Colafrancesco S., Mazor R.D., Soriano A., Agmon-Levin N., Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects. J. Autoimmun. 2013; 47: 1-16. 10.1016/j.jaut.2013.10.004.
  17. Kanduc D. Peptide cross-reactivity: the original sin of vaccines. Front. Biosci. (Schol Ed). 2012; 4: 1393-401.
  18. McGarvey P.B., Suzek B.E., Baraniuk J.N., Rao S., Conkright B., Lababidi S. et al. In silico analysis of autoimmune diseases and genetic relationships to vaccination against infectious diseases. BMC Immunol. 2014; 15: 61.
  19. Watad A., Bragazzi N.L., McGonagle D., Adawi M., Bridgewood C., Damiani G. et al. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) demonstrates distinct autoimmune and autoinflammatory disease associations according to the adjuvant subtype: Insights from an analysis of 500 cases. Clin. Immunol. 2019; 203: 1-8.
  20. Wang B., Shao X., Wang D., Xu D., Zhang J. Autoimmunity reviews vaccinations and risk of systemic lupus erythematosus and rheumatoid arthritis : A systematic review and meta-analysis. Autoimmun. Rev. 2017; 16(7): 756-65.
  21. Nusinovici S., Seegers H., Joly A., Beaudeau F., Fourichon C. A side effect of decreased fertility associated with vaccination against bluetongue virus serotype 8 in Holstein dairy cows. Prev. Vet. Med. 2011; 101(1-2): 42-50. 10.1016/j.prevetmed.2011.05.011.
  22. Segal L., Wilby O.K., Willoughby C.R., Veenstra S., Deschamps M. Evaluation of the intramuscular administration of CervarixTM vaccine on fertility, pre- and post-natal development in rats. Reprod. Toxicol. 2011; 31(1): 111-20.
  23. Wacholder S., Chen B.E., Wilcox A., Macones G., Gonzalez P., Befano B. et al. Risk of miscarriage with bivalent vaccine against human papillomavirus (HPV) types 16 and 18: pooled analysis of two randomised controlled trials. BMJ. 2010; 340: c712.
  24. Panagiotou O.A., Befano B.L., Gonzalez P., Rodríguez A.C., Herrero R., Schiller J.T. et al. Effect of bivalent human papillomavirus vaccination on pregnancy outcomes: long term observational follow-up in the Costa Rica HPV Vaccine Trial. BMJ. 2015; 351: h4358.
  25. Wiesen A.R., Littell C.T. Relationship between prepregnancy anthrax vaccination and pregnancy and birth outcomes among US Army women. JAMA. 2002; 287(12): 1556-60.
  26. Catherino W.H., Levi A., Kao T.C., Leondires M.P., McKeeby J., Segars J.H. Anthrax vaccine does not affect semen parameters, embryo quality, or pregnancy outcome in couples with a vaccinated male military service member. Fertil. Steril. 2005; 83(2): 480-3.
  27. Carp H.J.A., Selmi C., Shoenfeld Y. The autoimmune bases of infertility and pregnancy loss. J. Autoimmun. 2012; 38(2-3): J266-74.
  28. Перминова С.Г. Бесплодие у женщин с аутоиммунной патологией щитовидной железы. Медицинский совет. 2012; 7: 40-4. [Perminova S.G. Infertility in women with autoimmune thyroid disease. Medical Council. 2012; 7: 40-4. (in Russian)].
  29. Cruz-Tapias P., Blank M., Anaya J.M., Shoenfeld Y. Infections and vaccines in the etiology of antiphospholipid syndrome. Curr. Opin. Rheumatol. 2012; 24(4): 389-93.
  30. Zivkovic I., Stojanovic M., Petrusic V., Inic-Kanada A., Dimitrijevic L. Induction of APS after TTd hyper-immunization has a different outcome in BALB/c and C57BL/6 Mice. Am. J. Reprod. Immunol. 2011; 65(5): 492-502. 10.1111/j.1600-0897.2010.00922.x.
  31. Gharavi A.E., Pierangeli S.S., Espinola R.G., Liu X., Colden-Stanfield M., Harris E.N. Antiphospholipid antibodies induced in mice by immunization with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo. Arthritis Rheum. 2002; 46(2): 545-52.
  32. Enjuanes L., Zuñiga S., Castaño-Rodriguez C., Gutierrez-Alvarez J., Canton J., Sola I. Molecular basis of coronavirus virulence and vaccine development. Adv. Virus Res. 2016; 96: 245-286.
  33. Lin J., Zhang J., Su N., Xu J., Wang N., Chen J. et al. Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. Antivir. Ther. 2007; 12(7): 1107-13. Available at:
  34. Martin J.E., Louder M.K., Holman L.A., Gordon I.J., Enama M.E., Larkin B.D. et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008; 26(50): 6338-43.
  35. Tseng C., Sbrana E., Iwata-yoshikawa N., Newman P.C., Garron T., Atmar R.L. et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012; 7(4): e35421.
  36. Bolles M., Deming D., Long K., Agnihothram S., Whitmore A., Ferris M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 2011; 85(23): 12201-15.
  37. Weingartl H., Czub M., Czub S., Neufeld J., Marszal P., Gren J. et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 2004; 78(22): 12672-6.
  38. Zhou Y., Jiang S., Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines. 2018; 17(8): 677-86.
  39. Sekaly R. The failed HIV Merck vaccine study : a step back or a launching point for future vaccine development? J. Exp. Med. 2008; 205(1): 7-12.
  40. Mubarak A., Alturaiki W., Hemida M.G. Middle east respiratory syndrome coronavirus (MERS-CoV): Infection, immunological response, and vaccine development. J. Immunol. Res. 2019; 2019: 6491738. 10.1155/2019/6491738.
  41. Koirala A., Joo Y.J., Khatami A., Chiu C., Britton P.N. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev. 2020; 35: 43-9.

Received 26.08.2020

Accepted 28.08.2020

About the Authors

Sofiya A. Zaycevskaya, student of Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University. Tel.: +7(916)215-97-13. E-mail:
31-5 Lomonosovsky Prospekt, 117192, Moscow, Russia.
Nataliya V. Dolgushina, MD, PhD, MPH, Vise-director – Chief of R&D Department, Academician V.I. Kulakov National Medical Research Centre for Obstetrics,
Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation. Tel.: +7(495)438-49-77. E-mail:
4 Academica Oparina st., 117997, Moscow, Russia.
Gennady T. Sukhikh, academician RAS, MD, PhD, Director of Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation. 4 Academica Oparina st., 117997, Moscow, Russia.

For citation: Zaitsevskaya S.A., Dolgushina N.V., Sukhikh G.T. The effect of vaccines on the reproductive system.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 9: 5-10 (in Russian).

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.