Current possibilities of cell therapy for Asherman’s syndrome

Sukhikh G.T., Chernukha G.E., Tabeeva G.I., Goryunov K.V., Silachev D.N.

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To carry out a systems analysis of the data available in the current literature on cell technologies used to restore the normal endometrium in Asherman’s syndrome (AS) refractory to traditional treatments.
Material and methods. The review includes the data of foreign and Russian articles published in the biomedical literature database Pubmed and the database ClinicalTrials.gov on this topic in the past 10 years.
Results. The paper gives the data available in the literature, suggesting the molecular and biological properties of the endometrium in AS. It analyzes various aspects of cell therapy, ranging from the type of stem cells and their sources to the alleged mechanisms of therapeutic action. The authors consider the results of experimental studies and clinical trials, which demonstrate a positive effect in restoring endometrial functional activity and regenerative properties.
Conclusion. Cell technologies are shown to have high therapeutic efficiency and prospects for their use for endometrial regeneration in AS. Nevertheless, it is necessary to conduct further investigations aimed at developing well-defined protocols for isolating stem cells from various sources, for unifying the procedure for their identification and phenotyping, as well as the schemes and ways of their insertion.

Keywords

Asherman’s syndrome
endometrial regeneration
stem cells
cell therapy

References

1. Fritsch H. Ein Fall von völligem Schwund der Gebärmutterhöhle nach Auskratzung. Zentralbl. Gynäkol. 1894; 18: 1337-42.

2. Asherman J.G. Traumatic intra-uterine adhesions. J. Obstet. Gynaecol. Br. Emp. 1950; 57(6): 892-6.

3. Xue X., Chen Q., Zhao G., Zhao J.Y., Duan Z., Zheng P.S. The overexpression of TGF-beta and CCN2 in intrauterine adhesions involves the NF-kappaB signaling pathway. PLoS One. 2015; 10(12): e0146159.

4. Yu D., Wong Y.M., Cheong Y., Xia E., Li T.C. Asherman syndrome – one century later. Fertil. Steril. 2008; 89(4): 759-79.

5. Айламазян Э.К., Гзгзян А.М., Джемлиханова Л.Х., Усольцева Е.О., Ниаури Д.А. Клинические возможности клеточных технологий на основе эндометриальных стволовых клеток. Журнал акушерства и женских болезней. 2012; 61(1): 3-11. [Aylamazyan E.K., Gzgzyan A.M., Dzhemlihanova L.H., Usoltseva E.O., Niauri D.A. Clinical possibilities of cell technologies based on endometrial stem cells. Zhurnal akusherstva i zhenskih bolezney. 2012; 61(1): 3-11. (in Russian)]

6. Chan R.W., Schwab K.E., Gargett C.E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 2004; 70(6): 1738-50.

7. Gargett C.E., Schwab K.E., Deane J.A. Endometrial stem/progenitor cells: the first 10 years. Hum. Reprod. Update. 2016; 22(2): 137-63.

8. Masuda H., Anwar S.S., Buhring H.J., Rao J.R., Gargett C.E. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012; 21(10): 2201-14.

9. Ulrich D., Tan K.S., Deane J., Schwab K., Cheong A., Rosamilia A. et al. Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum. Reprod. 2014; 29(9): 1895-905.

10. Blau H.M., Brazelton T.R., Weimann J.M. The evolving concept of a stem cell: entity or function? Cell. 2001; 105(7): 829-41.

11. Kaya Okur H.S., Das A., Taylor R.N., Bagchi I.C., Bagchi M.K. Roles of estrogen Rreceptor-alpha and the coactivator MED1 during human endometrial decidualization. Mol. Endocrinol. 2016; 30(3): 302-13.

12. Zhao G., Cao Y., Zhu X., Tang X., Ding L., Sun H. et al. Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating DeltaNp63 expression in Asherman’s syndrome. Sci. China Life Sci. 2017; 60(4): 404-16.

13. Di Como C.J., Urist M.J., Babayan I., Drobnjak M., Hedvat C.V., Teruya-Feldstein J. et al. p63 expression profiles in human normal and tumor tissues. Clin. Cancer Res. 2002; 8(2): 494-501.

14. Сухих Г.Т., Силачев Д.Н., Певзнер И.Б., Зорова Л.Д., Бабенко В.А., Попков В.А., Янкаускас С.С., Зубков В.В., Зоров Д.Б., Плотников Е.Ю. Перспективы использования стволовых и прогениторных клеток для терапии последствий гипоксически-ишемической энцефалопатии новорожденных. Акушерство и гинекология. 2016; 5: 55-66. http://dx.doi.org/10.18565/aig.2016.5.55-66 [Sukhikh G.T., Silachyov D.N., Pevzner I.B., Zorova L.D., Babenko V.A., Popkov V.A., Yankauskas S.S., Zubkov V.V., Zorov D.B., Plotnikov E.Yu. Prospects for using stem and progenitor cells in the therapy of consequences of neonatal hypoxic-ischemic encephalopathy. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; (5): 55-66. (in Russian) http://dx.doi.org/10.18565/aig.2016.5.55-66]

15. Conforti A., Alviggi C., Mollo A., De Placido G., Magos A. The management of Asherman syndrome: a review of literature. Reprod. Biol. Endocrinol. 2013; 11: 118.

16. Schenker J.G., Margalioth E.J. Intrauterine adhesions: an updated appraisal. Fertil. Steril. 1982; 37(5): 593-610.

17. Shaffer W. Role of uterine adhesions in the cause of multiple pregnancy losses. Clin. Obstet. Gynecol. 1986; 29(4): 912-24.

18. Deans R., Abbott J. Review of intrauterine adhesions. J. Minim. Invasive Gynecol. 2010; 17(5): 555-69.

19. Munro M.G., Abbott J.A., Bradley L.D., Howard F.M., Jacobs V.R., Sokol A.I. et al. AAGL practice report: practice guidelines for management of intrauterine synechiae. J. Minim. Invasive Gynecol. 2010; 17(1): 1-7.

20. Gargett C.E., Nguyen H.P., Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev. Endocr. Metab. Disord. 2012; 13(4): 235-51.

21. Magos A. Hysteroscopic treatment of Asherman’s syndrome. Reprod. Biomed. Online. 2002; 4(Suppl. 3): 46-51.

22. Chen L., Zhang H., Wang Q., Xie F., Gao S., Song Y. et al. Reproductive outcomes in patients with intrauterine adhesions following hysteroscopic adhesiolysis: experience from the largest women’s hospital in China. J. Minim. Invasive Gynecol. 2017; 24(2): 299-304.

23. Cai H., Qiao L., Song K., He Y. Oxidized, regenerated cellulose adhesion barrier plus intrauterine device prevents recurrence after adhesiolysis for moderate to severe intrauterine adhesions. J. Minim. Invasive Gynecol. 2017; 24(1): 80-8.

24. Mahla R.S. Stem cells applications in regenerative medicine and disease therapeutics. Int. J. Cell Biol. 2016; 2016: 6940283.

25. Hentze H., Soong P.L., Wang S.T., Phillips B.W., Putti T.C., Dunn N.R. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009; 2(3): 198-210.

26. Trohatou O., Roubelakis M.G. Mesenchymal stem/stromal cells in regenerative medicine: past, present, and future. Cell. Reprogram. 2017; 19(4): 217-24.

27. Krampera M., Galipeau J., Shi Y., Tarte K., Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells--The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy. 2013; 15(9): 1054-61.

28. Ryan J.M., Barry F.P., Murphy J.M., Mahon B.P. Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm. (Lond.). 2005; 2: 8.

29. Moll G., Jitschin R., von Bahr L., Rasmusson-Duprez I., Sundberg B., Lonnies L. et al. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses. PLoS One. 2011; 6(7): e21703.

30. Li Y., Lin F. Mesenchymal stem cells are injured by complement after their contact with serum. Blood. 2012; 120(17): 3436-43.

31. Han Z.C., Du W.J., Han Z.B., Liang L. New insights into the heterogeneity and functional diversity of human mesenchymal stem cells. Biomed. Mater. Eng. 2017; 28(Suppl. 1): S29-45.

32. Hocking A.M. The role of chemokines in mesenchymal stem cell homing to wounds. Adv. Wound Care (New Rochelle). 2015; 4(11): 623-30.

33. Jiang S., Haider H.Kh., Idris N.M., Salim A., Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ. Res. 2006; 99(7): 776-84.

34. Tögel F., Weiss K., Yang Y., Hu Z., Zhang P., Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 2007; 292(5): F1626-35.

35. Wakabayashi K., Nagai A., Sheikh A.M., Shiota Y., Narantuya D., Watanabe T. et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J. Neurosci. Res. 2010; 88(5): 1017-25.

36. Kalinina N.I., Sysoeva V.Y., Rubina K.A., Parfenova Y.V., Tkachuk V.A. Mesenchymal stem cells in tissue growth and repair. Acta Naturae. 2011; 3(4): 30-7.

37. Ohnishi S., Sumiyoshi H., Kitamura S., Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 2007; 581(21): 3961-6.

38. Nagaya N., Kangawa K., Itoh T., Iwase T., Murakami S., Miyahara Y. et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005; 112(8): 1128-35.

39. Rubtsov Y.P., Suzdaltseva Y.G., Goryunov K.V., Kalinina N.I., Sysoeva V.Y., Tkachuk V.A. Regulation of immunity via multipotent mesenchymal stromal cells. Acta Naturae. 2012; 4(1): 23-31.

40. Brandau S., Jakob M., Hemeda H., Bruderek K., Janeschik S., Bootz F. et al. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J Leukoc. Biol. 2010; 88(5): 1005-15.

41. Li W., Ren G., Huang Y., Su J., Han Y., Li J. et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 2012; 19(9): 1505-13.

42. Hass R., Kasper C., Böhm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011; 9: 12.

43. Xu Y., Zhu H., Zhao D., Tan J. Endometrial stem cells: clinical application and pathological roles. Int. J. Clin. Exp. Med. 2015; 8(12): 22039-44.

44. Arutyunyan I., Elchaninov A., Makarov A., Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016; 2016: 6901286.

45. Arutyunyan I.V., Kananykhina E.Y., Fatkhudinov T.Kh., El’chaninov A.V., Makarov A.V., Raimova E.Sh., Bol’shakova G.B., Sukhikh G.T. Angiogenic potential of multipotent stromal cells from the umbilical cord: an in vitro study. Bull. Exp. Biol. Med. 2016; 161(1): 141-9.

46. Gunsilius E., Gastl G., Petzer A.L. Hematopoietic stem cells. Biomed. Pharmacother. 2001; 55(4): 186-94.

47. Ogawa M., LaRue A.C., Mehrotra M. Plasticity of hematopoietic stem cells. Best Pract. Res. Clin. Haematol. 2015; 28(2-3): 73-80.

48. Taylor H.S. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004; 292(1): 81-5.

49. Civin C.I., Gore S.D. Antigenic analysis of hematopoiesis: a review. J. Hematother. 1993; 2(2): 137-44.

50. Bonig H., Papayannopoulou T. Mobilization of hematopoietic stem/progenitor cells: general principles and molecular mechanisms. Methods Mol. Biol. 2012; 904: 1-14.

51. Jaiswal S., Chao M.P., Majeti R., Weissman I.L. Macrophages as mediators of tumor immunosurveillance. Trends Immunol. 2010; 31(6): 212-9.

52. Zheng J., Song C., Zhang C.C. A new chapter: hematopoietic stem cells are direct players in immunity. Cell Biosci. 2011; 1: 33.

53. Mackie A.R., Losordo D.W. CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex. Heart Inst. J. 2011; 38(5): 474-85.

54. Mayani H., Alvarado-Moreno J.A., Flores-Guzman P. Biology of human hematopoietic stem and progenitor cells present in circulation. Arch. Med. Res. 2003; 34(6): 476-88.

55. Iafolla M.A., Tay J., Allan D.S. Transplantation of umbilical cord blood-derived cells for novel indications in regenerative therapy or immune modulation: a scoping review of clinical studies. Biol. Blood Marrow Transplant. 2014; 20(1): 20-5.

56. Hildbrand P., Cirulli V., Prinsen R.C., Smith K.A., Torbett B.E., Salomon D.R. et al. The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood. 2004; 104(7): 2010-9.

57. Gargett C.E., Masuda H. Adult stem cells in the endometrium. Mol. Hum. Reprod. 2010; 16(11): 818-34.

58. Du H., Taylor H.S. Stem cells and reproduction. Curr. Opin. Obstet. Gynecol. 2010; 22(3): 235-41.

59. Wolff E.F., Gao X.B., Yao K.V., Andrews Z.B., Du H., Elsworth J.D., Taylor H.S. Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J. Cell. Mol. Med. 2011; 15(4): 747-55.

60. Santamaria X., Massasa E.E., Feng Y., Wolff E., Taylor H.S. Derivation of insulin producing cells from human endometrial stromal stem cells and use in the treatment of murine diabetes. Mol. Ther. 2011; 19(11): 2065-71.

61. Masuda H., Maruyama T., Hiratsu E., Yamane J., Iwanami A., Nagashima T. et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/γcnull immunodeficient mice. Proc. Natl. Acad. Sci. USA. 2007; 104(6): 1925-30.

62. Hyodo S., Matsubara K., Kameda K., Matsubara Y. Endometrial injury increases side population cells in the uterine endometrium: a decisive role of estrogen. Tohoku J. Exp. Med. 2011; 224(1): 47-55.

63. Gargett C.E., Ye L. Endometrial reconstruction from stem cells. Fertil. Steril. 2012; 98(1): 11-20.

64. Kilic S., Yuksel B., Pinarli F., Albayrak A., Boztok B., Delibasi T. Effect of stem cell application on Asherman syndrome, an experimental rat model. J. Assist. Reprod. Genet. 2014; 31(8): 975-82.

65. Пекарев О.Г., Майбородин И.В., Поздняков И.М., Оноприенко Н.В., Пекарева Е.О., Аникеев А.А. Экспериментальное обоснование применения клеточных технологий в коррекции рубца миометрия. Акушерство и гинекология. 2016; 8: 79-85. http://dx.doi.org/10.18565/aig.2016.8.79-85 [Pekarev O.G., Maiborodin I.V., Pozdnyakov I.M., Onoprienko N.V., Pekareva E.O., Anikeev A.A. Experimental rationale for the use of cell technologies for the correction of myometrial scar. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; (8): 79-85. (in Russian) http://dx.doi.org/10.18565/aig.2016.8.79-85]

66. Cervelló I., Gil-Sanchis C., Mas A., Faus A., Sanz J., Moscardó F. et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient. PLoS One. 2012; 7(1): e30260.

67. Nagori C.B., Panchal S.Y., Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. J. Hum. Reprod. Sci. 2011; 4(1): 43-8.

68. Zhao Y., Wang A., Tang X., Li M., Yan L., Shang W., Gao M. Intrauterine transplantation of autologous bone marrow derived mesenchymal stem cells followed by conception in a patient of severe intrauterine adhesions. Open J. Obstet. Gynecol. 2013; 3: 377-80.

69. Meng X., Ichim T.E., Zhong J., Rogers A., Yin Z., Jackson J. et al. Endometrial regenerative cells: a novel stem cell population. J. Transl. Med. 2007; 5: 57.

70. Rodrigues M.C., Lippert T., Nguyen H., Kaelber S., Sanberg P.R., Borlongan C.V. Menstrual blood-derived stem cells: in vitro and in vivo characterization of functional effects. Adv. Exp. Med. Biol. 2016; 951: 111-21.

71. Tan J., Li P., Wang Q., Li Y., Li X., Zhao D. et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum. Reprod. 2016; 31(12): 2723-9.

72. Singh N., Mohanty S., Seth T., Shankar M., Bhaskaran S., Dharmendra S. Autologous stem cell transplantation in refractory Asherman’s syndrome: A novel cell based therapy. J. Hum. Reprod. Sci. 2014; 7(2): 93-8.

73. Santamaria X., Cabanillas S., Cervello I., Arbona C., Raga F., Ferro J. et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: a pilot cohort study. Hum. Reprod. 2016; 31(5): 1087-96.

74. Lalu M.M., McIntyre L., Pugliese C., Fergusson D., Winston B.W., Marshall J.C. et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012; 7(10): e47559.

75. Silachev D.N., Plotnikov E.Y., Babenko V.A., Danilina T.I., Zorov L.D., Pevzner I.B., Zorov D.B., Sukhikh G.T. Intra-arterial administration of multipotent mesenchymal stromal cells promotes functional recovery of the brain after traumatic brain injury. Bull. Exp. Biol. Med. 2015; 159(4): 528-33.

76. Silachev D.N., Kondakov A.K., Znamenskii I.A., Kurashvili Y.B., Abolenskaya A.V., Antipkin N.R., Danilina T.I., Manskikh V.N., Gulyaev M.V., Pirogov Y.A., Plotnikov E.Y., Zorov D.B., Sukhikh G.T. The use of technetium-99m for intravital tracing of transplanted multipotent stromal cells. Bull. Exp. Biol. Med. 2016; 162(1): 153-9.

Received 09.06.2017

Accepted 23.06.2017

About the Authors

Sukhikh Gennady Tikhonovich, PhD, Professor, Academic of RAS, Director of Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381800. E-mail: g_sukhikh@oparina4.ru
Chernukha Galina E., Professor, MD, Head of the Department of Gynecological Endocrinology, Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4
Tabeyeva Gyuzal I., Ph.D., Senior Researcher of the Department of Gynecological Endocrinology, Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79031997282. E-mail: doctor.gtab@gmail.com
Goryunov Kirill Vladimirovich, Junior Research Scientist, laboratory of cell technologies of Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79164108844. E-mail: k_gorunov@oparina4.ru
Silachev Denis Nikolaevich, PhD. Senior Research Scientist, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Senior Researcher, Research Center of Obstetrics, Gynecology and Perinatology. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79057921301. E-mail: silachevdn@genebee.msu.ru

For citations: Sukhikh G.T., Chernukha G.E., Tabeeva G.I., Goryunov K.V., Silachev D.N. Current possibilities of cell therapy for Asherman’s syndrome.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; (5): 20-8. (in Russian)
https://dx.doi.org/10.18565/aig.2018.5.20-28

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.