Modern concepts on the etiology and pathogenesis of prema-ture rupture of membranes

Baisova A.R., Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tyutyunnik V.L.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

Preterm birth is one of the great obstetrical syndromes that poses an enormous problem for obstetricians nowadays. Being the leading cause of infant mortality in the world, it accounts for 80% of all cases of neonatal morbidity and leads to serious financial and emotional losses for families and society. One of the most severe complications leading to preterm birth is premature rupture of membranes (PROM). The article covers the etiological and pathogenetic aspects of PROM including inflammation as a key factor. Aseptic inflammation associated with biological aging and maturation of the membranes is considered as a variant of the PROM pathogenesis. Collagen remodeling, development of microcracks in the membranes, and enhanced angiogenesis are considered as factors contributing to the destruction of the extracellular matrix. To date, the study of rupture of the membranes has been carried out in terms of cell biology and histology, as well as inflammation. This review examines various pathogenetic variants of PROM which may occur independently or in combination. Despite the large number of studies on the subject, there is currently a great interest in new approaches to the prevention of PROM, the search for prognostic markers and risk factors for the development of effective therapeutic tactics. Conclusion: The introduction of new research methods that can reveal or clarify the mechanisms of aseptic and infectious pathogenesis using mass spectrometry in PROM will help to identify differential patterns of protein expression associated with oxidative stress and bacterial invasion in the amniotic fluid and membranes. The introduction of non-invasive markers into clinical practice will provide the clinicians with the possibility of taking timely preventive measures, prescribing therapy and determining the tactics of management of pregnant women in order to improve the perinatal outcomes.

Authors’ contributions: Baisova A.R., Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tyutyunnik V.L. – developing the concept and design of the study, obtaining data for analysis, collecting publications, processing and analyzing material on the topic, writing the text of the manuscript, editing the article.

Conflicts of interest: The authors declare no conflict of interest.

Funding: The work was supported by the Russian Science Foundation, grant No. 22-15-00232.

For citation: Baisova A.R., Amiraslanov E.Yu., Frankevich V.E., Chagovets V.V., Tyutyunnik V.L. Modern concepts on the etiology and pathogenesis of premature rupture of membranes. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (10): 21-27 (in Russian) http://dx.doi.org/10.18565/aig.2023.199

Keywords

premature rupture of membranes
fetal membranes
preterm birth
intra-amniotic inflammation
aseptic inflammation

References

  1. Tchirikov M., Schlabritz-Loutsevitch N., Maher J., Buchmann J., Naberezhnev Y., Winarno A.S. et al. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Perinat. Med. 2018; 46(5): 465-88. https://dx.doi.org/10.1515/jpm-2017-0027.
  2. Peaceman A.M., Lai Y., Rouse D.J., Spong C.Y., Mercer B.M., Varner M.W. et al. Length of latency with preterm premature rupture of membranes before 32 weeks’ gestation. Am. J. Perinatol. 2015; 32(1): 57-62. https://dx.doi.org/10.1055/s-0034-1373846.
  3. Thomson A.J. Care of women presenting with suspected preterm prelabour rupture of membranes from 24 (+0) weeks of gestation: Green-top Guideline No. 73. BJOG. 2019; 126(9): e152-66. https://dx/doi.org/10.1111/1471-0528.15803.
  4. Ohuma E.O., Moller A.-B., Bradley E., Chakwera S., Hussain-Alkhateeb L., Lewin A. et al. National, regional, and worldwide estimates of preterm birth in 2020, with trends from 2010: a systematic analysis. Lancet. 2023; 402(10409): 1261-71. https://dx.doi.org/10.1016/S0140-6736(23)00878-4.
  5. Perin J., Mulick A., Yeung D., Villavicencio F., Lopez G., Strong K.L. et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health. 2022; 6(2): 106-15. https://dx.doi.org/10.1016/S2352-4642(21)00311-4.
  6. Bond D.M., Middleton P., Levett K.M., van der Ham D.P., Crowther C.A., Buchanan S.L. et al. Planned early birth versus expectant management for women with preterm prelabour rupture of membranes prior to 37 weeks' gestation for im-proving pregnancy outcome. Cochrane Database Syst. Rev. 2017; 3(3): CD004735. https://dx.doi.org/10.1002/14651858.
  7. Siegler Y., Weiner Z., Solt I. ACOG Practice Bulletin No. 217: prelabor rup-ture of membranes. Obstet. Gynecol. 2020; 136(5): 1061. https://dx.doi.org/10.1097/AOG.0000000000004142.
  8. Menon R., Richardson L.S. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin. Perinatol. 2017; 41(7): 409-19. https://dx.doi.org/10.1053/j.semperi.2017.07.012.
  9. Menon R., Richardson L.S., Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta. 2019; 79: 40-5. https://dx.doi.org/10.1016/j.placenta.2018.11.003.
  10. Kumar D., Moore R.M., Mercer B.M., Mansour J.M., Redline,R.W., Moore J.J. The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta. 2016; 42: 59-73. https://dx.doi.org/10.1016/j.placenta.2016.03.015.
  11. Romero R., Miranda J., Chaemsaithong P., Chaiworapongsa T., Kusanovic J.P., Dong Z. et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal. Neonatal. Med. 2015; 28(12): 1394-409. https://dx.doi.org/10.3109/14767058.2014.958463.
  12. Šket T., Ramuta T.Ž., Starčič Erjavec M., Kreft M.E. The role of innate immune system in the human amniotic membrane and human amniotic fluid in protection against intra-amniotic infections and inflammation. Front. Immunol. 2021; 12: 735324. https://dx.doi.org/10.3389/fimmu.2021.735324.
  13. Helmo F.R., Alves E.A. R., Moreira R.A.A., Severino V.O., Rocha L.P., Mon-teiroM. et al. Intrauterine infection, immune system and premature birth. J. Matern. Fetal. Neonatal. Med. 2018; 31(9): 1227-33. https://dx.doi.org/10.1080/14767058.2017.1311318.
  14. Gomez-Lopez N., Romero R., Xu Y., Miller D., Leng Y., Panaitescu B. et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am. J. Reprod. Immunol. 2018; 79(4): e12827. https://dx.doi.org/10.1111/aji.12827.
  15. Mendz G.L., Kaakoush N.O., Quinlivan J.A. Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Front. Cell. Infect. Microbiol. 2013; 3: 58. https://dx.doi.org/10.3389/fcimb.2013.00058.
  16. Peng C.C., Chang J.H., Lin H.Y., Cheng P.J., Su B.H. Intrauterine inflammation, infection, or both (Triple I): a new concept for chorioamnionitis. Pediatr.Neonatol. 2018; 59(3): 231-7. https://dx.doi.org/10.1016/j.pedneo.2017.09.001.
  17. Кан Н.Е., Санникова М.В., Донников А.Е., Климанцев И.В., Амирасланов Э.Ю., Ломова Н.А., Кесова М.И., Костин П.А., Тютюнник В.Л., Сухих Г.Т. Клинические и молекулярно-генетические факторы риска преждевременного разрыва плодных оболочек. Акушерство и гинекология. 2013; 4: 14-8. [Kan N.E., Sannikova M.V., Donnikov A.E., Klimantsev I.V., Amiraslanov E.Yu., Lomova N.A., Kesova M.I., Kostin P.A., Tyutyunnik V.L., Sukhikh G.T. Clinical and molecular genetic risk factors for premature rupture of membranes. Obstetrics and Gynecology. 2013; (4): 14-8. (in Russian)].
  18. Кim H.J., Park K.H., Joo E., Lee J.Y., Im E.M., Lee K.N., Shin S. Expression of inflammatory, angiogenic, and extracellular matrix-related mediators in the cervicovaginal fluid of women with preterm premature rupture of membranes: Relationship with acute histological chorioamnionitis. Am. J. Reprod. Immunol. 2023; 89(5): e13697. https://dx.doi.org/10.1111/aji.13697.
  19. Brown R.G., Marchesi J.R., Lee Y.S., Smith A., Lehne B., Kindinger L.M. et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2020; 47(4): 9. https://dx.doi.org/10.1186/s12916-017-0999-x.
  20. Кузнецова Н.Б., Буштырева И.О., Дыбова В.С., Баринова В.В., Полев Д.Е., Асеев М.В., Дудурич В.В. Микробиом влагалища у беременных с прежде­временным разрывом плодных оболочек в сроке от 22 до 28 недель беременности. Акушерство и гинекология. 2021; 1: 94-102. [Kuznetsova N.B., Bushtyreva I.O., Dybova V.S., Barinova V.V., Polev D.E., Aseev M.V., Dudurich V.V. Vaginal microbiome in pregnant women with premature rupture of membranes in the period from 22 to 28 weeks of pregnancy. Obstetrics and Gynecology. 2021; (1): 94-102. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.l.94-102.
  21. Brown R.G., Al-Memar M., Marchesi J.R., Lee Y.S., Smith A., Chan D. et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl. Res. 2019; 207: 30-43. https://dx.doi.org/10.1016/j.trsl.2018.12.005.
  22. Bennett P.R., Brown R.G., MacIntyre D.A. Vaginal microbiome in preterm rupture of membranes. Obstet. Gynecol. Clin. North Am. 2020; 47(4): 503-21. https://dx.doi.org/10.1016/j.ogc.2020.08.001.
  23. Yan C., Hong F., Xin G., Duan S., Deng X., Xu Y. Alterations in the vaginal microbiota of patients with preterm premature rupture of membranes. Front. Cell. Infect. Microbiol. 2022; 12: 858732. https://dx.doi.org/10.3389/fcimb.2022.858732.
  24. Perez-Muñoz M.E., Arrieta M.C., Ramer-Tait A.E., Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017; 5(1): 48. https://dx.doi.org/10.1186/s40168-017-0268-4.
  25. Blaser M.J., Devkota S., McCoy K.D., Relman D.A., Yassour M., Young V.B. Lessons learned from the prenatal microbiome controversy. Microbiome. England. 2021; 9(1): 8. https://dx.doi.org/10.1186/s40168-020-00946-2.
  26. Baldwin E.A., Walther-Antonio M., MacLean A.M., Gohl D.M., Beckman K.B., Chen J. et al. Persistent microbial dysbiosis in preterm premature rupture of membranes from onset until delivery. PeerJ. 2015; 3: e1398. https://dx.doi.org/10.7717/peerj.1398.
  27. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014; 6(237): 237ra65. https://dx.doi.org/10.1126/scitranslmed.3008599.
  28. de Goffau M.C., Lager S., Sovio U., Gaccioli F., Cook E., Peacock S.J. et al. Human placenta has no microbiome but can contain potential pathogens. Nature. 2019; 572(7769): 329-34. https://dx.doi.org/10.1038/s41586-019-1451-5.
  29. Gomez-Lopez N., Romero R., Plazyo O., Schwenkel G., Garcia-Flores V., Unkel R. et al. Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. Am. J. Obstet. Gynecol. 2017; 217(5): 592.e1-592.e17. https://dx.doi.org/10.1016/j.ajog.2017.08.008.
  30. Behnia F., Taylor B.D., Woodson M., Kacerovsky M., Hawkins H., Fortunato S.J. et al. Chorioamniotic membrane senescence: a signal for parturition? Am. J. Obstet. Gynecol. 2015; 213(3): 359.e1-16. https://dx.doi.org/10.1016/j.ajog.2015.05.041.
  31. Menon R., Boldogh I., Urrabaz-Garza R., Polettini J., Syed T.A., Saade G.R. et al. Senescence of primary amniotic cells via oxidative DNA damage. PLoS One. 2013; 8(12): e83416. https://dx.doi.org/10.1371/journal.pone.0083416.
  32. Dutta E.H., Behnia F., Boldogh I., Saade G.R., Taylor B.D., Kacerovský M. et al. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol. Hum. Reprod. 2016; 22(2): 143-57. https://dx.doi.org/10.1093/molehr/gav074.
  33. Dixon C.L., Richardson L., Sheller-Miller S., Saade G., Menon R. A distinct mechanism of senescence activation in amnion epithelial cells by infection, inflammation, and oxidative stress. Am. J. Reprod. Immunol. 2018; 79(3): e12790. https://dx.doi.org/10.1111/aji.12790.
  34. Richardson L.S., Radnaa E., Urrabaz-Garza R., Lavu N., Menon R. Stretch, scratch, and stress: Suppressors and supporters of senescence in human fetal membranes. Placenta. 2020; 99: 27-34. https://dx.doi.org/10.1016/j.placenta.2020.07.013.
  35. Bredeson S., Papaconstantinou J., Deford J.H., Kechichian T., Syed T.A., Saade G.R. et al. HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One. 2014; 9(12): e113799. https://dx.doi.org/10.1371/journal.pone.0113799.
  36. Park J.W., Park K.H., Jung E.Y. Clinical significance of histologic chorioamnionitis with a negative amniotic fluid culture in patients with preterm labor and premature membrane rupture. PLoS One. 2017; 12(3): e0173312. https://dx.doi.org/10.1371/journal.pone.0173312.
  37. Choltus H., Lavergne M., Belville C., Gallot D., Minet-Quinard R., Durif J. et al. Occurrence of a RAGE-mediated inflammatory response in human fetal membranes. Front. Physiol. 2020; 11: 581. https://dx.doi.org/10.3389/fphys.2020.00581.
  38. Bouvier D., Giguère Y., Blanchon L., Bujold E., Pereira B., Bernard N. et al. Study of sRAGE, HMGB1, AGE, and S100A8/A9 concentrations in plasma and in serum-extracted extracellular vesicles of pregnant women with preterm premature rupture of membranes. Front. Physiol. 2020; 11: 609. https://dx.doi.org/10.3389/fphys.2020.00609.
  39. Plazyo O., Romero R., Unkel R., Balancio A., Mial T.N., Xu Y. et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol. Reprod. 2016; 95(6): 130. https://dx.doi.org/10.1095/biolreprod.116.144139.
  40. Naruse K., Sado T., Noguchi T., Tsunemi T., Yoshida S., Akasaka J. et al. Peripheral RAGE (receptor for advanced glycation endproducts)-ligands in normal pregnancy and preeclampsia: novel markers of inflammatory response. J. Reprod. Immunol. 2012; 93(2): 69-74. https://dx.doi.org/10.1016/j.jri.2011.12.003.
  41. Rzepka R., Dołegowska B., Rajewska A., Kwiatkowski S., Sałata D., Budkowska М. et al. Biomed. Res. Int. 2015; 2015: 568042. https://dx.doi.org/10.1155/2015/568042.
  42. Yan H., Zhu L., Zhang Z., Li H., Li P., Wang Y. et al. HMGB1-RAGE signaling pathway in pPROM. Taiwan. J. Obstet. Gynecol. 2018; 57(2): 211-6. https://dx.doi.org/10.1016/j.tjog.2018.02.008.
  43. Choltus H., Lavergne M., De Sousa Do Outeiro C., Coste K., Belville C., Blanchon L. et al. Pathophysiological implication of pattern recognition receptors in fetal membranes rupture: RAGE and NLRP inflammasome. Biomedicines. 2021; 9(9): 1123. https://dx.doi.org/10.3390/biomedicines9091123.
  44. Behnia F., Saade G., Michael V., Kacerovsky M., Dutta E., Polettini J. et al. 98: Term fetal membranes and senescence associated secretory phenotype (SASP)-like gene expression: a signal for parturition? Am. J. Obstet. Gynecol. 2015; 212(1): S66. https://dx.doi.org/10.1016/j.ajog.2014.10.144.
  45. Низяева Н.В., Карапетян А.О., Гапаева М.Д., Синицына В.А., Баев О.Р. Структурные особенности плодных оболочек при преждевременных родах. Акушерство и гинекология. 2019; 8: 63-9. [Nizyaeva N.V., Karapetyan A.O., Gapaeva M.D., Sinitsyna V.A., Baev O.R. Structural features of fetal membranes in preterm birth. Obstetrics and Gynecology. 2019. (8): 63-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.8.63-6.
  46. Richardson L.S., Vargas G., Brown T., Ochoa L., Sheller-Miller S., Saade G.R. et al. Discovery and сharacterization of human amniochorionic membrane icrofractures. Am. J. Pathol. 2017; 187(12): 2821-30. https://dx.doi.org/10.1016/j.ajpath.2017.08.019.
  47. Mogami H., Word R.A. Healing mechanism of ruptured fetal membrane. Front.Physiol. 2020; 11: 623. https://dx.doi.org/10.3389/fphys.2020.00623.
  48. Richardson L., Menon R. Proliferative, migratory, and transition properties reveal metastate of human amnion cells. Am. J. Pathol. 2018; 188(9): 2004-15. https://dx.doi.org/10.1016/j.ajpath.2018.05.019.
  49. Горина К.А., Ходжаева З.С., Чаговец В.В., Стародубцева Н.Л., Франкевич В.Е., Припутневич Т.В. Особенности профиля органических кислот амниотической и цервико-вагинальной жидкостей беременных высокого риска преждевременных родов. Акушерство и гинекология. 2022; 3: 39-48. [Gorina K.A., Khodzhaeva Z.S., Chagovets V.V., Starodubtseva N.L., Frankevich V.E., Priputnevich T.V. Features of the profile of organic acids in amniotic and cervicovaginal fluids of pregnant women at high risk of preterm birth. Obstetrics and Gynecology. 2022; (3): 39-48. (in Russian)]. https://dx.doi.org/ 10.18565/aig.2022.3.39-48.
  50. Cobo T., Burgos-Artizzu X.P., Collado M.C., Andreu-Fernández V., Sanchez-Garcia A.B., Filella X. et al. Noninvasive prediction models of intra-amniotic infection in women with preterm labor. Am. J. Obstet. Gynecol. 2023; 228(1): 78. e1-78.e13. https:/dx.doi.org/10.1016/j.ajog.2022.07.027.
  51. Yoshikawa K., Kiyoshima C., Hirakawa T., Urushiyama D., Fukagawa S., Izuchi D. et al. Diagnostic predictability of miR-4535 and miR-1915-5p expression in amniotic fluid for foetal morbidity of infection. Placenta. 2021; 114: 68-75. https://dx.doi.org/10.1016/j.placenta.2021.08.059.
  52. Back J.H., Kim S.Y., Gu M.B., Kim H.J., Lee K.N., Lee J. et al. Proteomic analysis of plasma to identify novel biomarkers for intra-amniotic infection and/or inflammation in preterm premature rupture of membranes. Sci. Rep. 2023; 13(1): 5658. https://dx.doi.org/10.1038/s41598-023-32884-y.

Received 18.08.2023

Accepted 01.09.2023

About the Authors

Almira R. Baisova, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology Ministry of Health of Russia, +7(932)099-10-04, almira.baisova@mail.ru, https://orcid.org/0009-0004-4546-2388, 117997, Russia, Moscow, Ac. Oparin str., 4.
Elrad Yu. Amiraslanov, PhD, Head of the Department of Obstetrics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology Ministry of Health of Russia, +7(495)438-30-47, eldis@mail.ru, https://orcid.org/0000-0001-5601-1241, 117997, Russia, Moscow, Ac. Oparin str., 4.
Vladimir E. Frankevich, Dr. Sci. (Physico-mathematical Sciences), Head of the Department of Systems Biology in Reproduction, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology Ministry of Health of Russia, v_frankevich@oparina4.ru, https://orcid.org/0000-0002-9780-4579,
117997, Russia, Moscow, Ac. Oparin str., 4.
Vitaliy V. Chagovets, PhD, Head of the Laboratory of Metabolomics and Bioinformatics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, v_chagovets@oparina4.ru, https://orcid.org/0000-0002-5120-376X, 117997, Russia, Moscow, Ac. Oparin str., 4.
Victor L. Tyutyunnik, Professor, Dr. Med. Sci., Leading Researcher of the Center for Scientific and Clinical Research, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(903)969-50-41, tioutiounnik@mail.ru, Researcher ID: B-2364-2015,
SPIN-код: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099, 117997, Russia, Moscow, Ac. Oparin str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.