Current understanding of preeclampsia with regard to the role of fetal brain neuronspecific proteins

Sidorova I.S., Managadze I.J.

I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russia

This article presents current data from the world literature and more than 20 years of research conducted by the authors into the nature and essence of preeclampsia as a multisystem neuroinflammatory gestational endotheliosis leading to the impairment of the cerebrovascular function and blood-brain barrier (BBB) integrity in both mother and fetus. Neuron-specific proteins (NSPs) as biomarkers of higher structures of the fetal central nervous system, its neuro- and corticogenesis have been shown to play a leading role in determining changes in the fetal brain. Since preeclampsia is a condition observed only in humans, the study of cerebrovascular changes at the level of BBB and the detection of abnormalities of its integrity and permeability in women with preeclampsia represent a challenging task. It is limited not only by clinical trials, but also by the use of imaging techniques and biomarkers in experiment. Neurofilament light chain (NfL), tau protein, neuron-specific enolase (NSE) and S100B are of particular interest. It is necessary to understand how preeclampsia impairs cerebrovascular function and maternal-fetal BBB integrity, causing NSPs to enter the maternal circulation, triggering an immune response with the formation of circulating immune complexes and complement activation through an abnormal pathway, and initiating systemic endothelial dysfunction. The comparative analysis of a large number of clinical observations, as well as data from general and special research, resulted in the development of a new scientific concept for understanding preeclampsia. This concept is based on the key role of NSPs, BBB and hyperactivation of complementary immune defense. The aim of the article is to identify the causal relationship of impaired fetal neurocorticogenesis, NSPs, and increased BBB permeability in the development of preeclampsia.
Conclusion: The proposed concept suggests the revision of therapeutic approaches to the management of patients with preeclampsia, opens the possibility of using innovative approaches to treatment and searching for new therapeutic targets.

Authors' contributions: Sidorova I.S. – developing the concept and design of the study, editing the text; 
Sidorova I.S., Managadze I.J. – collection and analysis of the literary data, writing the text.
Conflicts of interest: The authors declare no possible conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Sidorova I.S., Managadze I.J. Current understanding of preeclampsia with 
regard to the role of fetal brain neuron-specific proteins.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (1): 5-11 (in Russian)
https://dx.doi.org/10.18565/aig.2024.221

Keywords

preeclampsia
endotheliosis
immune complexes
BBB
fetal brain neuro-specific proteins
NSE
S100B
NfL
tau

References

  1. Филиппов О.С., Гусева Е.В. Материнская смертность в Российской Федерации в 2020 году: первый год пандемии COVID-19. Проблемы репродукции. 2022; 28(1): 8-28. [Filippov O.S., Guseva E.V. Maternal mortality in the Russian Federation in 2020: the first year of the pandemic. Russian Journal of Human Reproduction. 2022; 28(1): 8-28. (in Russian)]. https://dx.doi.org/10.17116/repro2022280118.
  2. Федеральная служба государственной статистики. Здравоохранение в России. Статистический сборник. М: Росстат; 2023. 179 с. [Federal State Statistics Service. Healthcare in Russia 2023. Moscow: Rosstat; 2023. 179 p. (in Russian)].
  3. Friis T., Wikström A.K., Acurio J., León J., Zetterberg H., Blennow K. et al. Cerebral biomarkers and blood-brain barrier integrity in preeclampsia. Cells. 2022; 11(5): 789. https://dx.doi.org/10.3390/cells11050789.
  4. Evers K.S., Atkinson A., Barro C., Fisch U., Pfister M., Huhn E.A. et al. Neurofilament as neuronal injury blood marker in preeclampsia. Hypertension. 2018; 71(6): 1178-84. https://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10314.
  5. Lederer W., Dominguez C.A., Popovscaia M., Putz G., Humpel C. Cerebrospinal fluid levels of tau and phospho-tau-181 proteins during pregnancy. Pregnancy Hypertens. 2016; 6(4): 384-7. https://dx.doi.org/10.1016/j.preghy.2016.08.243.
  6. Bergman L., Torres-Vergara P., Penny J., Wikström J., Nelander M., Leon J. et al. Investigating maternal brain alterations in preeclampsia: the need for a multidisciplinary effort. Curr. Hypertens Rep. 2019; 21(9): 72. https://dx.doi.org/10.1007/s11906-019-0977-0.
  7. Liao J., Zhang Z., Huang W., Huang Q., Bi G. Neonatal neuron specific enolase, a sensitive biochemical marker of neuronal damage, is increased in preeclampsia: A retrospective cohort study. Brain Dev. 2020; 42(8): 564-71. https://dx.doi.org/10.1016/j.braindev.2020.04.011.
  8. Bergman L., Akhter T., Wikström A.K., Wikström J., Naessen T., Åkerud H. Plasma levels of S100B in preeclampsia and association with possible central nervous system effects. Am. J. Hypertens. 2014; 27(8): 1105-11. https://dx.doi.org/10.1093/ajh/hpu020.
  9. Сидорова И.С., Никитина Н.А. Особенности патогенеза эндотелиоза при преэклампсии. Акушерство и гинекология. 2015; 1: 72-8. [Sidorova IS, Nikitina NA. Pathogenesis of endotheliosis in preeclampsia. Obstetrics and Gynecology. 2015; (1): 72-8. (in Russian)].
  10. Сидорова И.С., Никитина Н.А. Обоснование современной концепции развития преэклампсии. Акушерство и гинекология. 2019; 4: 26-33. [Sidorova I.S., Nikitina N.A. Validation of the modern concept of the development of preeclampsia. Obstetrics and Gynecology. 2019; (4): 26-33. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.4.26-33.
  11. Сидорова И.С., Никитина Н.А. Преэклампсия как гестационный иммунокомплексный комплементопосредованный эндотелиоз. Российский вестник акушера-гинеколога. 2019; 19(1): 5-11. [Sidorova I.S., Nikitina N.A. Preeclampsia as gestational immune complex complement-mediated endotheliosis. Russian Bulletin of Obstetrician-Gynecologist. 2019; 19(1): 5-11. (in Russian)]. https://dx.doi.org/10.17116/rosakush2019190115.
  12. Burwick R.M., Feinberg B.B. Complement activation and regulation in preeclampsia and hemolysis, elevated liver enzymes, and low platelet count syndrome. Am. J. Obstet. Gynecol. 2022; 226(2S): S1059-S1070. https://dx.doi.org/10.1016/j.ajog.2020.09.038.
  13. Collier A.Y., Smith L.A., Karumanchi S.A. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. Hum. Immunol. 2021; 82(5): 362-70. https://dx.doi.org/10.1016/j.humimm.2021.01.004.
  14. González-Rojas A., Valencia-Narbona M. Neurodevelopmental disruptions in children of preeclamptic mothers: pathophysiological mechanisms and consequences. Int. J. Mol. Sci. 2024; 25(7): 3632. https://dx.doi.org/10.3390/ijms25073632.
  15. Bergman L., Hastie R., Bokström-Rees E., Zetterberg H., Blennow K., Schell S. et al. Cerebral biomarkers in neurologic complications of preeclampsia. Am. J. Obstet. Gynecol. 2022; 227(2): 298.e1-298.e10. https://dx.doi.org/10.1016/j.ajog.2022.02.036.
  16. Bergman L., Åkerud H., Wikström A.K., Larsson M., Naessen T., Akhter T. Cerebral biomarkers in women with preeclampsia are still elevated 1 year postpartum. Am. J. Hypertens. 2016; 29(12):1374-9. https://dx.doi.org/10.1093/ajh/hpw097.
  17. Escudero C., Kupka E., Ibañez B., Sandoval H., Troncoso F., Wikström A.K. et al. Brain vascular dysfunction in mothers and their children exposed to preeclampsia. Hypertension. 2023; 80(2): 242-56. https://dx.doi.org/10.1161/HYPERTENSIONAHA.122.19408.
  18. Bergman L., Åkerud H. Plasma levels of the cerebral biomarker, neuron-specific enolase, are elevated during pregnancy in women developing preeclampsia. Reprod Sci. 2016; 23(3): 395-400. https://dx.doi.org/10.1177/1933719115604732.
  19. Bergman L., Zetterberg H., Kaihola H., Hagberg H., Blennow K., Åkerud H. Blood-based cerebral biomarkers in preeclampsia: Plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study. PLoS One. 2018; 13(5): e0196025. https://dx.doi.org/10.1371/journal.pone.0196025.
  20. Artunc-Ulkumen B., Guvenc Y., Goker A., Gozukara C. Maternal serum S100-B, PAPP-A and IL-6 levels in severe preeclampsia. Arch. Gynecol. Obstet. 2015; 292(1): 97-102. https://dx.doi.org/10.1007/s00404-014-3610-0.
  21. Hastie R., Bergman L., Walker S., Kaitu’u-Lino T., Hannan N., Brownfoot F. et al. P-009. Associations between circulating sFlt-1 and PlGF and preeclampsia with severe maternal complications, or eclampsia. Pregnancy Hypertension. 2021; 25: e32. https://dx.doi.org/10.1016/j.preghy.2021.07.044.
  22. Bergman L., Zetterberg H., Kaihola H., Hagberg H., Blennow K., Akerud H. P 8 Cerebral biomarkers in women developing preeclampsia. Pregnancy Hypertension. 2017; 9: 40-1. https://dx.doi.org/10.1016/j.preghy.2017.07.086.
  23. Andersson M., Oras J., Thörn S.E., Karlsson O., Kälebo P., Zetterberg H. et al. Signs of neuroaxonal injury in preeclampsia-A case control study. PLoS One. 2021; 16(2): e0246786. https://dx.doi.org/10.1371/journal.pone.0246786.
  24. Wu J., Sheng X., Zhou S., Fang C., Song Y., Wang H. et al. Clinical significance of S100B protein in pregnant woman with early- onset severe preeclampsia. Ginekol. Pol. 2024; 95(9): 711-7. https://dx.doi.org/10.5603/GP.a2021.0126.
  25. Jurewicz E., Filipek A. Ca2+-binding proteins of the S100 family in preeclampsia. Placenta. 2022; 127: 43-51. https://dx.doi.org/10.1016/j.placenta.2022.07.018.
  26. Busse M., Scharm M., Oettel A., Redlich A., Costa S.D., Zenclussen A.C. Enhanced S100B expression in T and B lymphocytes in spontaneous preterm birth and preeclampsia. J. Perinat. Med. 2021; 50(2): 157-66. https://dx.doi.org/10.1515/jpm-2021-0326.
  27. Tiensuu H., Haapalainen A.M., Karjalainen M.K., Pasanen A., Huusko J.M., Marttila R. et al. Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet. 2019; 15(6): e1008107. https://dx.doi.org/10.1371/journal.pgen.1008107.
  28. Santos G., Barateiro A., Gomes C.M., Brites D., Fernandes A. Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment. Neuropharmacology. 2018; 129: 69-83. https://dx.doi.org/10.1016/j.neuropharm.2017.11.002.
  29. Rana S., Lemoine E., Granger J.P., Karumanchi S.A. Preeclampsia: pathophysiology, challenges, and perspectives. Circ. Res. 2019; 124(7): 1094-112. https://dx.doi.org/10.1161/CIRCRESAHA.118.313276.
  30. Thelin E.P., Nelson D.W., Bellander B.M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. (Wien). 2017; 159(2): 209-25. https://dx.doi.org/10.1007/s00701-016-3046-3.
  31. Bergman L. Cerebral biomarkers in women with preeclampsia. Uppsala: Acta Universitatis Upsaliensis; 2017. 98p.
  32. Ghanem H.B., El-Deeb O.S., Hagras A.M. Neuron specific enolase in relation to chitotriosidase and heat shock protein 72: a network of integrated predictive biomarkers in preeclampsia and eclampsia. J. Mol. Biomark. Diagn. 2018; 9(3): 1000391. https://dx.doi.org/10.4172/2155-9929.1000391.
  33. Haque A., Ray S.K., Cox A., Banik N.L. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury. Metab. Brain Dis. 2016; 31(3): 487-95. https://dx.doi.org/10.1007/s11011-016-9801-6.
  34. Kelen D., Andorka C., Szabó M., Alafuzoff A., Kaila K., Summanen M. Serum copeptin and neuron specific enolase are markers of neonatal distress and long-term neurodevelopmental outcome. PLoS One. 2017; 12(9): e0184593. https://dx.doi.org/10.1371/journal.pone.0184593.
  35. Evers K.S. Novel biomarkers in perinatology and infancy. Basel; 2021. https://dx.doi.org/10.5451/unibas-ep85950
  36. Weksler B., Romero I.A., Couraud P.O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013; 10(1): 16. https://dx.doi.org/10.1186/2045-8118-10-16.
  37. Disanto G., Barro C., Benkert P., Naegelin Y., Schädelin S., Giardiello A. et al.; Swiss Multiple Sclerosis Cohort Study Group. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017; 81(6): 857-70. https://dx.doi.org/10.1002/ana.24954.
  38. Bacioglu M., Maia L.F., Preische O., Schelle J., Apel A., Kaeser S.A. et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron. 2016; 91(1): 56-66. https://dx.doi.org/10.1016/j.neuron.2016.05.018.
  39. Busche M.A., Wegmann S., Dujardin S., Commins C., Schiantarelli J., Klickstein N. et al. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 2019; 22(1): 57-64. https://dx.doi.org/10.1038/s41593-018-0289-8.
  40. Wang R., Lu K.P., Zhou X.Z. Function and regulation of cis P-tau in the pathogenesis and treatment of conventional and nonconventional tauopathies. J. Neurochem. 2023; 166(6): 904-14. https://dx.doi.org/10.1111/jnc.15909.
  41. Qiu C., Albayram O., Kondo A., Wang B., Kim N., Arai K. et al. Cis P-tau underlies vascular contribution to cognitive impairment and dementia and can be effectively targeted by immunotherapy in mice. Sci. Transl. Med. 2021; 13(596): eaaz7615. https://dx.doi.org/10.1126/scitranslmed.aaz7615.
  42. Albayram O., Kondo A., Mannix R., Smith C., Tsai C.Y., Li C. et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat. Commun. 2017; 8(1): 1000. https://dx.doi.org/10.1038/s41467-017-01068-4.
  43. Ashton N.J., Pascoal T.A., Karikari T.K., Benedet A.L., Lantero-Rodriguez J., Brinkmalm G. et al. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology. Acta Neuropathol. 2021; 141(5): 709-24. https://dx.doi.org/10.1007/s00401-021-02275-6.
  44. Nakashima A., Cheng S.B., Ikawa M., Yoshimori T., Huber W.J., Menon R. et al. Evidence for lysosomal biogenesis proteome defect and impaired autophagy in preeclampsia. Autophagy. 2020; 16(10): 1771-85. https://dx.doi.org/10.1080/15548627.2019.1707494.
  45. Cheng S., Banerjee S., Daiello L.A., Nakashima A., Jash S., Huang Z. et al. Novel blood test for early biomarkers of preeclampsia and Alzheimer's disease. Sci. Rep. 2021; 11(1): 15934. https://dx.doi.org/10.1038/s41598-021-95611-5.
  46. Jash S., Banerjee S., Cheng S., Wang B., Qiu C., Kondo A. et al. Cis P-tau is a central circulating and placental etiologic driver and therapeutic target of preeclampsia. Nat. Commun. 2023; 14(1): 5414. https://dx.doi.org/10.1038/s41467-023-41144-6.

Received 03.09.2024

Accepted 25.12.2024

About the Authors

Iraida S. Sidorova, Dr. Med. Sci., Professor, Academician of the RAS, Merited Scholar of the Russian Federation, Merited Doctor of the Russian Federation,
Professor at the Department of Obstetrics and Gynecology №1, Medical Faculty, I.M. Sechenov First MSMU, Ministry of Health of Russia (Sechenov University),
119991, Russia, Moscow, Trubetskaya str. 8, bld. 2, +7(499)248-67-29, sidorovais@yandex.ru
Ioanna J. Managadze, student, N.V. Sklifosovsky ICM, I.M. Sechenov First MSMU, Ministry of Health of Russia (Sechenov University), 119991, Russia, Moscow,
Trubetskaya str., 8, bld. 2, +7(495)609-14-00, ktb1966@mail.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.